Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle3 Structured version   Visualization version   GIF version

Theorem lhpexle3 35801
Description: There exists atom under a co-atom different from any three other elements. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝   𝑌,𝑝   𝑍,𝑝

Proof of Theorem lhpexle3
StepHypRef Expression
1 lhpex1.l . . . . 5 = (le‘𝐾)
2 lhpex1.a . . . . 5 𝐴 = (Atoms‘𝐾)
3 lhpex1.h . . . . 5 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle2 35799 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
5 3anass 1081 . . . . 5 ((𝑝 𝑊𝑝𝑋𝑝𝑌) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌)))
65rexbii 3179 . . . 4 (∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌)))
74, 6sylib 208 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌)))
81, 2, 3lhpexle2 35799 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
98adantr 472 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
10 3anass 1081 . . . . . . 7 ((𝑝 𝑊𝑝𝑋𝑝𝑍) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍)))
1110rexbii 3179 . . . . . 6 (∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍)))
129, 11sylib 208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍)))
131, 2, 3lhpexle2 35799 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑍))
14 3anass 1081 . . . . . . . . . . 11 ((𝑝 𝑊𝑝𝑌𝑝𝑍) ↔ (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍)))
1514rexbii 3179 . . . . . . . . . 10 (∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑍) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍)))
1613, 15sylib 208 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍)))
17163ad2ant1 1128 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍)))
18 simpl1 1228 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl3l 1287 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑌𝐴)
20 simpl2l 1283 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑍𝐴)
21 simprl 811 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑋𝐴)
22 simpl3r 1289 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑌 𝑊)
23 simpl2r 1285 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑍 𝑊)
24 simprr 813 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑋 𝑊)
251, 2, 3lhpexle3lem 35800 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑍𝐴𝑋𝐴) ∧ (𝑌 𝑊𝑍 𝑊𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)))
2618, 19, 20, 21, 22, 23, 24, 25syl133anc 1500 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)))
27 df-3an 1074 . . . . . . . . . . . 12 ((𝑝𝑌𝑝𝑍𝑝𝑋) ↔ ((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
2827anbi2i 732 . . . . . . . . . . 11 ((𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)) ↔ (𝑝 𝑊 ∧ ((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋)))
29 3anass 1081 . . . . . . . . . . 11 ((𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋) ↔ (𝑝 𝑊 ∧ ((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋)))
3028, 29bitr4i 267 . . . . . . . . . 10 ((𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)) ↔ (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
3130rexbii 3179 . . . . . . . . 9 (∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
3226, 31sylib 208 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
3317, 32lhpexle1lem 35796 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
34 an31 876 . . . . . . . . . 10 (((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋) ↔ ((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
3534anbi2i 732 . . . . . . . . 9 ((𝑝 𝑊 ∧ ((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋)) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌)))
36 3anass 1081 . . . . . . . . 9 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌)))
3735, 29, 363bitr4i 292 . . . . . . . 8 ((𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
3837rexbii 3179 . . . . . . 7 (∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
3933, 38sylib 208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
40393expa 1112 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
4112, 40lhpexle1lem 35796 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
42 an32 874 . . . . . . 7 (((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌) ↔ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
4342anbi2i 732 . . . . . 6 ((𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌)) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍)))
44 3anass 1081 . . . . . 6 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍)))
4543, 36, 443bitr4i 292 . . . . 5 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
4645rexbii 3179 . . . 4 (∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
4741, 46sylib 208 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
487, 47lhpexle1lem 35796 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
49 df-3an 1074 . . . . 5 ((𝑝𝑋𝑝𝑌𝑝𝑍) ↔ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
5049anbi2i 732 . . . 4 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍)))
5144, 50bitr4i 267 . . 3 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
5251rexbii 3179 . 2 (∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
5348, 52sylib 208 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wrex 3051   class class class wbr 4804  cfv 6049  lecple 16150  Atomscatm 35053  HLchlt 35140  LHypclh 35773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-lhyp 35777
This theorem is referenced by:  cdlemftr3  36355
  Copyright terms: Public domain W3C validator