Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle2lem Structured version   Visualization version   GIF version

Theorem lhpexle2lem 35790
Description: Lemma for lhpexle2 35791. (Contributed by NM, 19-Jun-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle2lem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝   𝑌,𝑝

Proof of Theorem lhpexle2lem
StepHypRef Expression
1 simpl1 1225 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 lhpex1.l . . . . 5 = (le‘𝐾)
3 lhpex1.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 lhpex1.h . . . . 5 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexle1 35789 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
61, 5syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
7 simp3l 1241 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 𝑊𝑝𝑋)) → 𝑝 𝑊)
8 simp3r 1242 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 𝑊𝑝𝑋)) → 𝑝𝑋)
9 simp2 1131 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 𝑊𝑝𝑋)) → 𝑋 = 𝑌)
108, 9neeqtrd 2993 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 𝑊𝑝𝑋)) → 𝑝𝑌)
117, 8, 103jca 1122 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 𝑊𝑝𝑋)) → (𝑝 𝑊𝑝𝑋𝑝𝑌))
12113expia 1114 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌) → ((𝑝 𝑊𝑝𝑋) → (𝑝 𝑊𝑝𝑋𝑝𝑌)))
1312reximdv 3146 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌) → (∃𝑝𝐴 (𝑝 𝑊𝑝𝑋) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌)))
146, 13mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
15 simpl1l 1276 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → 𝐾 ∈ HL)
16 simpl2l 1280 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → 𝑋𝐴)
17 simpl3l 1284 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → 𝑌𝐴)
18 simpr 479 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → 𝑋𝑌)
19 eqid 2752 . . . . 5 (join‘𝐾) = (join‘𝐾)
202, 19, 3hlsupr 35167 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))
2115, 16, 17, 18, 20syl31anc 1476 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))
22 eqid 2752 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
23 simpl1l 1276 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ HL)
24 hllat 35145 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2523, 24syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ Lat)
26 simprlr 822 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝐴)
2722, 3atbase 35071 . . . . . . . . 9 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
2826, 27syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 ∈ (Base‘𝐾))
29 simpl2l 1280 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋𝐴)
30 simpl3l 1284 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌𝐴)
3122, 19, 3hlatjcl 35148 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
3223, 29, 30, 31syl3anc 1473 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
33 simpl1r 1278 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑊𝐻)
3422, 4lhpbase 35779 . . . . . . . . 9 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3533, 34syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑊 ∈ (Base‘𝐾))
36 simprr3 1274 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 (𝑋(join‘𝐾)𝑌))
37 simpl2r 1282 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋 𝑊)
38 simpl3r 1286 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌 𝑊)
3922, 3atbase 35071 . . . . . . . . . . 11 (𝑋𝐴𝑋 ∈ (Base‘𝐾))
4029, 39syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋 ∈ (Base‘𝐾))
4122, 3atbase 35071 . . . . . . . . . . 11 (𝑌𝐴𝑌 ∈ (Base‘𝐾))
4230, 41syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌 ∈ (Base‘𝐾))
4322, 2, 19latjle12 17255 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑋 𝑊𝑌 𝑊) ↔ (𝑋(join‘𝐾)𝑌) 𝑊))
4425, 40, 42, 35, 43syl13anc 1475 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → ((𝑋 𝑊𝑌 𝑊) ↔ (𝑋(join‘𝐾)𝑌) 𝑊))
4537, 38, 44mpbi2and 994 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) 𝑊)
4622, 2, 25, 28, 32, 35, 36, 45lattrd 17251 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 𝑊)
47 simprr1 1270 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑋)
48 simprr2 1272 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑌)
4946, 47, 483jca 1122 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑝 𝑊𝑝𝑋𝑝𝑌))
5049exp44 642 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → (𝑋𝑌 → (𝑝𝐴 → ((𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)) → (𝑝 𝑊𝑝𝑋𝑝𝑌)))))
5150imp31 447 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) ∧ 𝑝𝐴) → ((𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)) → (𝑝 𝑊𝑝𝑋𝑝𝑌)))
5251reximdva 3147 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → (∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌)))
5321, 52mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
5414, 53pm2.61dane 3011 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1624  wcel 2131  wne 2924  wrex 3043   class class class wbr 4796  cfv 6041  (class class class)co 6805  Basecbs 16051  lecple 16142  joincjn 17137  Latclat 17238  Atomscatm 35045  HLchlt 35132  LHypclh 35765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-preset 17121  df-poset 17139  df-plt 17151  df-lub 17167  df-glb 17168  df-join 17169  df-meet 17170  df-p0 17232  df-p1 17233  df-lat 17239  df-clat 17301  df-oposet 34958  df-ol 34960  df-oml 34961  df-covers 35048  df-ats 35049  df-atl 35080  df-cvlat 35104  df-hlat 35133  df-lhyp 35769
This theorem is referenced by:  lhpexle2  35791
  Copyright terms: Public domain W3C validator