Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle1 Structured version   Visualization version   GIF version

Theorem lhpexle1 35815
Description: There exists an atom under a co-atom different from any given element. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝

Proof of Theorem lhpexle1
StepHypRef Expression
1 lhpex1.l . . . . 5 = (le‘𝐾)
2 lhpex1.a . . . . 5 𝐴 = (Atoms‘𝐾)
3 lhpex1.h . . . . 5 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle 35812 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 𝑝 𝑊)
5 tru 1636 . . . . . 6
65jctr 566 . . . . 5 (𝑝 𝑊 → (𝑝 𝑊 ∧ ⊤))
76reximi 3149 . . . 4 (∃𝑝𝐴 𝑝 𝑊 → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤))
84, 7syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤))
9 simpll 807 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → 𝐾 ∈ HL)
10 simprl 811 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑋𝐴)
11 eqid 2760 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1211, 3lhpbase 35805 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1312ad2antlr 765 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑊 ∈ (Base‘𝐾))
14 eqid 2760 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
151, 14, 2, 3lhplt 35807 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑋(lt‘𝐾)𝑊)
1611, 14, 22atlt 35246 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑊 ∈ (Base‘𝐾)) ∧ 𝑋(lt‘𝐾)𝑊) → ∃𝑝𝐴 (𝑝𝑋𝑝(lt‘𝐾)𝑊))
179, 10, 13, 15, 16syl31anc 1480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝𝑋𝑝(lt‘𝐾)𝑊))
18 simp3r 1245 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑝(lt‘𝐾)𝑊)
19 simp1ll 1303 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝐾 ∈ HL)
20 simp2 1132 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑝𝐴)
21 simp1lr 1304 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑊𝐻)
221, 14pltle 17182 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑊𝐻) → (𝑝(lt‘𝐾)𝑊𝑝 𝑊))
2319, 20, 21, 22syl3anc 1477 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → (𝑝(lt‘𝐾)𝑊𝑝 𝑊))
2418, 23mpd 15 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑝 𝑊)
25 a1tru 1649 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → ⊤)
26 simp3l 1244 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑝𝑋)
2724, 25, 263jca 1123 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋))
28273expia 1115 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴) → ((𝑝𝑋𝑝(lt‘𝐾)𝑊) → (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋)))
2928reximdva 3155 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → (∃𝑝𝐴 (𝑝𝑋𝑝(lt‘𝐾)𝑊) → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋)))
3017, 29mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋))
318, 30lhpexle1lem 35814 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋))
32 3simpb 1145 . . 3 ((𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋) → (𝑝 𝑊𝑝𝑋))
3332reximi 3149 . 2 (∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
3431, 33syl 17 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wtru 1633  wcel 2139  wne 2932  wrex 3051   class class class wbr 4804  cfv 6049  Basecbs 16079  lecple 16170  ltcplt 17162  Atomscatm 35071  HLchlt 35158  LHypclh 35791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-p1 17261  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-lhyp 35795
This theorem is referenced by:  lhpexle2lem  35816  lhpexle2  35817  lhpex2leN  35820
  Copyright terms: Public domain W3C validator