MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop2 Structured version   Visualization version   GIF version

Theorem lhop2 23772
Description: L'Hôpital's Rule for limits from the left. If 𝐹 and 𝐺 are differentiable real functions on (𝐴, 𝐵), and 𝐹 and 𝐺 both approach 0 at 𝐵, and 𝐺(𝑥) and 𝐺' (𝑥) are not zero on (𝐴, 𝐵), and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐵 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐵 also exists and equals 𝐶. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop2.a (𝜑𝐴 ∈ ℝ*)
lhop2.b (𝜑𝐵 ∈ ℝ)
lhop2.l (𝜑𝐴 < 𝐵)
lhop2.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
lhop2.g (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
lhop2.if (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
lhop2.ig (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
lhop2.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
lhop2.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
lhop2.gn0 (𝜑 → ¬ 0 ∈ ran 𝐺)
lhop2.gd0 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
lhop2.c (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
Assertion
Ref Expression
lhop2 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝜑,𝑧   𝑧,𝐹   𝑧,𝐺

Proof of Theorem lhop2
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qssre 11795 . . 3 ℚ ⊆ ℝ
2 lhop2.a . . . 4 (𝜑𝐴 ∈ ℝ*)
3 lhop2.b . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 10086 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 lhop2.l . . . 4 (𝜑𝐴 < 𝐵)
6 qbtwnxr 12028 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑎 ∈ ℚ (𝐴 < 𝑎𝑎 < 𝐵))
72, 4, 5, 6syl3anc 1325 . . 3 (𝜑 → ∃𝑎 ∈ ℚ (𝐴 < 𝑎𝑎 < 𝐵))
8 ssrexv 3665 . . 3 (ℚ ⊆ ℝ → (∃𝑎 ∈ ℚ (𝐴 < 𝑎𝑎 < 𝐵) → ∃𝑎 ∈ ℝ (𝐴 < 𝑎𝑎 < 𝐵)))
91, 7, 8mpsyl 68 . 2 (𝜑 → ∃𝑎 ∈ ℝ (𝐴 < 𝑎𝑎 < 𝐵))
10 simpr 477 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ (𝑎(,)𝐵))
11 simprl 794 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝑎 ∈ ℝ)
1211adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑎 ∈ ℝ)
133ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝐵 ∈ ℝ)
14 elioore 12202 . . . . . . . 8 (𝑧 ∈ (𝑎(,)𝐵) → 𝑧 ∈ ℝ)
1514adantl 482 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ ℝ)
16 iooneg 12289 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ (𝑎(,)𝐵) ↔ -𝑧 ∈ (-𝐵(,)-𝑎)))
1712, 13, 15, 16syl3anc 1325 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑧 ∈ (𝑎(,)𝐵) ↔ -𝑧 ∈ (-𝐵(,)-𝑎)))
1810, 17mpbid 222 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝑧 ∈ (-𝐵(,)-𝑎))
1918adantrr 753 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑧 ∈ (𝑎(,)𝐵) ∧ -𝑧 ≠ -𝐵)) → -𝑧 ∈ (-𝐵(,)-𝑎))
20 lhop2.f . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2120ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
22 elioore 12202 . . . . . . . . . . . . 13 (𝑥 ∈ (-𝐵(,)-𝑎) → 𝑥 ∈ ℝ)
2322adantl 482 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ ℝ)
2423recnd 10065 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ ℂ)
2524negnegd 10380 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → --𝑥 = 𝑥)
26 simpr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ (-𝐵(,)-𝑎))
2725, 26eqeltrd 2700 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → --𝑥 ∈ (-𝐵(,)-𝑎))
2811adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑎 ∈ ℝ)
293ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐵 ∈ ℝ)
3023renegcld 10454 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ ℝ)
31 iooneg 12289 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ -𝑥 ∈ ℝ) → (-𝑥 ∈ (𝑎(,)𝐵) ↔ --𝑥 ∈ (-𝐵(,)-𝑎)))
3228, 29, 30, 31syl3anc 1325 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 ∈ (𝑎(,)𝐵) ↔ --𝑥 ∈ (-𝐵(,)-𝑎)))
3327, 32mpbird 247 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ (𝑎(,)𝐵))
342adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐴 ∈ ℝ*)
35 simprrl 804 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐴 < 𝑎)
3611rexrd 10086 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝑎 ∈ ℝ*)
37 xrltle 11979 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝑎 ∈ ℝ*) → (𝐴 < 𝑎𝐴𝑎))
3834, 36, 37syl2anc 693 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴 < 𝑎𝐴𝑎))
3935, 38mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐴𝑎)
40 iooss1 12207 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴𝑎) → (𝑎(,)𝐵) ⊆ (𝐴(,)𝐵))
4134, 39, 40syl2anc 693 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑎(,)𝐵) ⊆ (𝐴(,)𝐵))
4241sselda 3601 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ -𝑥 ∈ (𝑎(,)𝐵)) → -𝑥 ∈ (𝐴(,)𝐵))
4333, 42syldan 487 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ (𝐴(,)𝐵))
4421, 43ffvelrnd 6358 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐹‘-𝑥) ∈ ℝ)
4544recnd 10065 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐹‘-𝑥) ∈ ℂ)
46 lhop2.g . . . . . . . 8 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
4746ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
4847, 43ffvelrnd 6358 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ℝ)
4948recnd 10065 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ℂ)
50 lhop2.gn0 . . . . . . 7 (𝜑 → ¬ 0 ∈ ran 𝐺)
5150ad2antrr 762 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ 0 ∈ ran 𝐺)
5246adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
53 ax-resscn 9990 . . . . . . . . . . . 12 ℝ ⊆ ℂ
54 fss 6054 . . . . . . . . . . . 12 ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
5552, 53, 54sylancl 694 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
5655adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
57 ffn 6043 . . . . . . . . . 10 (𝐺:(𝐴(,)𝐵)⟶ℂ → 𝐺 Fn (𝐴(,)𝐵))
5856, 57syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺 Fn (𝐴(,)𝐵))
59 fnfvelrn 6354 . . . . . . . . 9 ((𝐺 Fn (𝐴(,)𝐵) ∧ -𝑥 ∈ (𝐴(,)𝐵)) → (𝐺‘-𝑥) ∈ ran 𝐺)
6058, 43, 59syl2anc 693 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ran 𝐺)
61 eleq1 2688 . . . . . . . 8 ((𝐺‘-𝑥) = 0 → ((𝐺‘-𝑥) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
6260, 61syl5ibcom 235 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝐺‘-𝑥) = 0 → 0 ∈ ran 𝐺))
6362necon3bd 2807 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (¬ 0 ∈ ran 𝐺 → (𝐺‘-𝑥) ≠ 0))
6451, 63mpd 15 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ≠ 0)
6545, 49, 64divcld 10798 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝐹‘-𝑥) / (𝐺‘-𝑥)) ∈ ℂ)
66 limcresi 23643 . . . . . 6 ((𝑧 ∈ ℝ ↦ -𝑧) lim 𝐵) ⊆ (((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) lim 𝐵)
67 ioossre 12232 . . . . . . . 8 (𝑎(,)𝐵) ⊆ ℝ
68 resmpt 5447 . . . . . . . 8 ((𝑎(,)𝐵) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧))
6967, 68ax-mp 5 . . . . . . 7 ((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧)
7069oveq1i 6657 . . . . . 6 (((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) lim 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) lim 𝐵)
7166, 70sseqtri 3635 . . . . 5 ((𝑧 ∈ ℝ ↦ -𝑧) lim 𝐵) ⊆ ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) lim 𝐵)
72 eqid 2621 . . . . . . . 8 (𝑧 ∈ ℝ ↦ -𝑧) = (𝑧 ∈ ℝ ↦ -𝑧)
7372negcncf 22715 . . . . . . 7 (ℝ ⊆ ℂ → (𝑧 ∈ ℝ ↦ -𝑧) ∈ (ℝ–cn→ℂ))
7453, 73mp1i 13 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑧 ∈ ℝ ↦ -𝑧) ∈ (ℝ–cn→ℂ))
753adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ℝ)
76 negeq 10270 . . . . . 6 (𝑧 = 𝐵 → -𝑧 = -𝐵)
7774, 75, 76cnmptlimc 23648 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 ∈ ((𝑧 ∈ ℝ ↦ -𝑧) lim 𝐵))
7871, 77sseldi 3599 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 ∈ ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) lim 𝐵))
7975renegcld 10454 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 ∈ ℝ)
8011renegcld 10454 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝑎 ∈ ℝ)
8180rexrd 10086 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝑎 ∈ ℝ*)
82 simprrr 805 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝑎 < 𝐵)
8311, 75ltnegd 10602 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑎 < 𝐵 ↔ -𝐵 < -𝑎))
8482, 83mpbid 222 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 < -𝑎)
85 eqid 2621 . . . . . . 7 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))
8644, 85fmptd 6383 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)):(-𝐵(,)-𝑎)⟶ℝ)
87 eqid 2621 . . . . . . 7 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))
8848, 87fmptd 6383 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)):(-𝐵(,)-𝑎)⟶ℝ)
89 reelprrecn 10025 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
9089a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ℝ ∈ {ℝ, ℂ})
91 neg1cn 11121 . . . . . . . . . . 11 -1 ∈ ℂ
9291a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -1 ∈ ℂ)
9320adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
9493ffvelrnda 6357 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℝ)
9594recnd 10065 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℂ)
96 fvexd 6201 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ V)
97 1cnd 10053 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 1 ∈ ℂ)
98 simpr 477 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
9998recnd 10065 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
100 1cnd 10053 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
10190dvmptid 23714 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
102 ioossre 12232 . . . . . . . . . . . . 13 (-𝐵(,)-𝑎) ⊆ ℝ
103102a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (-𝐵(,)-𝑎) ⊆ ℝ)
104 eqid 2621 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
105104tgioo2 22600 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
106 iooretop 22563 . . . . . . . . . . . . 13 (-𝐵(,)-𝑎) ∈ (topGen‘ran (,))
107106a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (-𝐵(,)-𝑎) ∈ (topGen‘ran (,)))
10890, 99, 100, 101, 103, 105, 104, 107dvmptres 23720 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ 𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ 1))
10990, 24, 97, 108dvmptneg 23723 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -1))
11093feqmptd 6247 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)))
111110oveq2d 6663 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))))
112 dvf 23665 . . . . . . . . . . . . 13 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
113 lhop2.if . . . . . . . . . . . . . . 15 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
114113adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
115114feq2d 6029 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
116112, 115mpbii 223 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
117116feqmptd 6247 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐹) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
118111, 117eqtr3d 2657 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
119 fveq2 6189 . . . . . . . . . 10 (𝑦 = -𝑥 → (𝐹𝑦) = (𝐹‘-𝑥))
120 fveq2 6189 . . . . . . . . . 10 (𝑦 = -𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘-𝑥))
12190, 90, 43, 92, 95, 96, 109, 118, 119, 120dvmptco 23729 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) · -1)))
122116adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
123122, 43ffvelrnd 6358 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐹)‘-𝑥) ∈ ℂ)
124123, 92mulcomd 10058 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐹)‘-𝑥) · -1) = (-1 · ((ℝ D 𝐹)‘-𝑥)))
125123mulm1d 10479 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-1 · ((ℝ D 𝐹)‘-𝑥)) = -((ℝ D 𝐹)‘-𝑥))
126124, 125eqtrd 2655 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐹)‘-𝑥) · -1) = -((ℝ D 𝐹)‘-𝑥))
127126mpteq2dva 4742 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) · -1)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)))
128121, 127eqtrd 2655 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)))
129128dmeqd 5324 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)))
130 negex 10276 . . . . . . . 8 -((ℝ D 𝐹)‘-𝑥) ∈ V
131 eqid 2621 . . . . . . . 8 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))
132130, 131dmmpti 6021 . . . . . . 7 dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)) = (-𝐵(,)-𝑎)
133129, 132syl6eq 2671 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (-𝐵(,)-𝑎))
13452ffvelrnda 6357 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐺𝑦) ∈ ℝ)
135134recnd 10065 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐺𝑦) ∈ ℂ)
136 fvexd 6201 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑦) ∈ V)
13752feqmptd 6247 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦)))
138137oveq2d 6663 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦))))
139 dvf 23665 . . . . . . . . . . . . 13 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
140 lhop2.ig . . . . . . . . . . . . . . 15 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
141140adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
142141feq2d 6029 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
143139, 142mpbii 223 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
144143feqmptd 6247 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑦)))
145138, 144eqtr3d 2657 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑦)))
146 fveq2 6189 . . . . . . . . . 10 (𝑦 = -𝑥 → (𝐺𝑦) = (𝐺‘-𝑥))
147 fveq2 6189 . . . . . . . . . 10 (𝑦 = -𝑥 → ((ℝ D 𝐺)‘𝑦) = ((ℝ D 𝐺)‘-𝑥))
14890, 90, 43, 92, 135, 136, 109, 145, 146, 147dvmptco 23729 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐺)‘-𝑥) · -1)))
149143adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
150149, 43ffvelrnd 6358 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ∈ ℂ)
151150, 92mulcomd 10058 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) · -1) = (-1 · ((ℝ D 𝐺)‘-𝑥)))
152150mulm1d 10479 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-1 · ((ℝ D 𝐺)‘-𝑥)) = -((ℝ D 𝐺)‘-𝑥))
153151, 152eqtrd 2655 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) · -1) = -((ℝ D 𝐺)‘-𝑥))
154153mpteq2dva 4742 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐺)‘-𝑥) · -1)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
155148, 154eqtrd 2655 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
156155dmeqd 5324 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
157 negex 10276 . . . . . . . 8 -((ℝ D 𝐺)‘-𝑥) ∈ V
158 eqid 2621 . . . . . . . 8 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))
159157, 158dmmpti 6021 . . . . . . 7 dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) = (-𝐵(,)-𝑎)
160156, 159syl6eq 2671 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (-𝐵(,)-𝑎))
16143adantrr 753 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥𝐵)) → -𝑥 ∈ (𝐴(,)𝐵))
162 limcresi 23643 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵) ⊆ (((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) lim -𝐵)
163 resmpt 5447 . . . . . . . . . . 11 ((-𝐵(,)-𝑎) ⊆ ℝ → ((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥))
164102, 163ax-mp 5 . . . . . . . . . 10 ((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥)
165164oveq1i 6657 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) lim -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) lim -𝐵)
166162, 165sseqtri 3635 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵) ⊆ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) lim -𝐵)
16775recnd 10065 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ℂ)
168167negnegd 10380 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → --𝐵 = 𝐵)
169 eqid 2621 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ -𝑥) = (𝑥 ∈ ℝ ↦ -𝑥)
170169negcncf 22715 . . . . . . . . . . 11 (ℝ ⊆ ℂ → (𝑥 ∈ ℝ ↦ -𝑥) ∈ (ℝ–cn→ℂ))
17153, 170mp1i 13 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ ℝ ↦ -𝑥) ∈ (ℝ–cn→ℂ))
172 negeq 10270 . . . . . . . . . 10 (𝑥 = -𝐵 → -𝑥 = --𝐵)
173171, 79, 172cnmptlimc 23648 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → --𝐵 ∈ ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵))
174168, 173eqeltrrd 2701 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵))
175166, 174sseldi 3599 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) lim -𝐵))
176 lhop2.f0 . . . . . . . . 9 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
177176adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ (𝐹 lim 𝐵))
178110oveq1d 6662 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐹 lim 𝐵) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)) lim 𝐵))
179177, 178eleqtrd 2702 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)) lim 𝐵))
180 eliooord 12230 . . . . . . . . . . . . . 14 (𝑥 ∈ (-𝐵(,)-𝑎) → (-𝐵 < 𝑥𝑥 < -𝑎))
181180adantl 482 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝐵 < 𝑥𝑥 < -𝑎))
182181simpld 475 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝐵 < 𝑥)
18329, 23, 182ltnegcon1d 10604 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 < 𝐵)
18430, 183ltned 10170 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥𝐵)
185184neneqd 2798 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ -𝑥 = 𝐵)
186185pm2.21d 118 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (𝐹‘-𝑥) = 0))
187186impr 649 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (𝐹‘-𝑥) = 0)
188161, 95, 175, 179, 119, 187limcco 23651 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)) lim -𝐵))
189 lhop2.g0 . . . . . . . . 9 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
190189adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ (𝐺 lim 𝐵))
191137oveq1d 6662 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐺 lim 𝐵) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦)) lim 𝐵))
192190, 191eleqtrd 2702 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦)) lim 𝐵))
193185pm2.21d 118 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (𝐺‘-𝑥) = 0))
194193impr 649 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (𝐺‘-𝑥) = 0)
195161, 135, 175, 192, 146, 194limcco 23651 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) lim -𝐵))
19660, 87fmptd 6383 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)):(-𝐵(,)-𝑎)⟶ran 𝐺)
197 frn 6051 . . . . . . . 8 ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)):(-𝐵(,)-𝑎)⟶ran 𝐺 → ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) ⊆ ran 𝐺)
198196, 197syl 17 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) ⊆ ran 𝐺)
19950adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran 𝐺)
200198, 199ssneldd 3604 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))
201 lhop2.gd0 . . . . . . . 8 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
202201adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran (ℝ D 𝐺))
203155rneqd 5351 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
204203eleq2d 2686 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) ↔ 0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))))
205158, 157elrnmpti 5374 . . . . . . . . 9 (0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) ↔ ∃𝑥 ∈ (-𝐵(,)-𝑎)0 = -((ℝ D 𝐺)‘-𝑥))
206 eqcom 2628 . . . . . . . . . . 11 (0 = -((ℝ D 𝐺)‘-𝑥) ↔ -((ℝ D 𝐺)‘-𝑥) = 0)
207150negeq0d 10381 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) = 0 ↔ -((ℝ D 𝐺)‘-𝑥) = 0))
208 ffn 6043 . . . . . . . . . . . . . . 15 ((ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
209149, 208syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
210 fnfvelrn 6354 . . . . . . . . . . . . . 14 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ -𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺))
211209, 43, 210syl2anc 693 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺))
212 eleq1 2688 . . . . . . . . . . . . 13 (((ℝ D 𝐺)‘-𝑥) = 0 → (((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
213211, 212syl5ibcom 235 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) = 0 → 0 ∈ ran (ℝ D 𝐺)))
214207, 213sylbird 250 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-((ℝ D 𝐺)‘-𝑥) = 0 → 0 ∈ ran (ℝ D 𝐺)))
215206, 214syl5bi 232 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (0 = -((ℝ D 𝐺)‘-𝑥) → 0 ∈ ran (ℝ D 𝐺)))
216215rexlimdva 3029 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (∃𝑥 ∈ (-𝐵(,)-𝑎)0 = -((ℝ D 𝐺)‘-𝑥) → 0 ∈ ran (ℝ D 𝐺)))
217205, 216syl5bi 232 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) → 0 ∈ ran (ℝ D 𝐺)))
218204, 217sylbid 230 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) → 0 ∈ ran (ℝ D 𝐺)))
219202, 218mtod 189 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))))
220116ffvelrnda 6357 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℂ)
221143ffvelrnda 6357 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ℂ)
222201ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D 𝐺))
223143, 208syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
224 fnfvelrn 6354 . . . . . . . . . . . . 13 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
225223, 224sylan 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
226 eleq1 2688 . . . . . . . . . . . 12 (((ℝ D 𝐺)‘𝑧) = 0 → (((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
227225, 226syl5ibcom 235 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐺)‘𝑧) = 0 → 0 ∈ ran (ℝ D 𝐺)))
228227necon3bd 2807 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘𝑧) ≠ 0))
229222, 228mpd 15 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ≠ 0)
230220, 221, 229divcld 10798 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) ∈ ℂ)
231 lhop2.c . . . . . . . . 9 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
232231adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
233 fveq2 6189 . . . . . . . . 9 (𝑧 = -𝑥 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘-𝑥))
234 fveq2 6189 . . . . . . . . 9 (𝑧 = -𝑥 → ((ℝ D 𝐺)‘𝑧) = ((ℝ D 𝐺)‘-𝑥))
235233, 234oveq12d 6665 . . . . . . . 8 (𝑧 = -𝑥 → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))
236185pm2.21d 118 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)) = 𝐶))
237236impr 649 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)) = 𝐶)
238161, 230, 175, 232, 235, 237limcco 23651 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))) lim -𝐵))
239 nfcv 2763 . . . . . . . . . . . . 13 𝑥
240 nfcv 2763 . . . . . . . . . . . . 13 𝑥 D
241 nfmpt1 4745 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))
242239, 240, 241nfov 6673 . . . . . . . . . . . 12 𝑥(ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))
243 nfcv 2763 . . . . . . . . . . . 12 𝑥𝑦
244242, 243nffv 6196 . . . . . . . . . . 11 𝑥((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦)
245 nfcv 2763 . . . . . . . . . . 11 𝑥 /
246 nfmpt1 4745 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))
247239, 240, 246nfov 6673 . . . . . . . . . . . 12 𝑥(ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))
248247, 243nffv 6196 . . . . . . . . . . 11 𝑥((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦)
249244, 245, 248nfov 6673 . . . . . . . . . 10 𝑥(((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))
250 nfcv 2763 . . . . . . . . . 10 𝑦(((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))
251 fveq2 6189 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) = ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥))
252 fveq2 6189 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦) = ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))
253251, 252oveq12d 6665 . . . . . . . . . 10 (𝑦 = 𝑥 → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦)) = (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)))
254249, 250, 253cbvmpt 4747 . . . . . . . . 9 (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)))
255128fveq1d 6191 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥))
256131fvmpt2 6289 . . . . . . . . . . . . . 14 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ -((ℝ D 𝐹)‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥) = -((ℝ D 𝐹)‘-𝑥))
257130, 256mpan2 707 . . . . . . . . . . . . 13 (𝑥 ∈ (-𝐵(,)-𝑎) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥) = -((ℝ D 𝐹)‘-𝑥))
258255, 257sylan9eq 2675 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) = -((ℝ D 𝐹)‘-𝑥))
259155fveq1d 6191 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥))
260158fvmpt2 6289 . . . . . . . . . . . . . 14 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ -((ℝ D 𝐺)‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥) = -((ℝ D 𝐺)‘-𝑥))
261157, 260mpan2 707 . . . . . . . . . . . . 13 (𝑥 ∈ (-𝐵(,)-𝑎) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥) = -((ℝ D 𝐺)‘-𝑥))
262259, 261sylan9eq 2675 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥) = -((ℝ D 𝐺)‘-𝑥))
263258, 262oveq12d 6665 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)) = (-((ℝ D 𝐹)‘-𝑥) / -((ℝ D 𝐺)‘-𝑥)))
264201ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ 0 ∈ ran (ℝ D 𝐺))
265213necon3bd 2807 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘-𝑥) ≠ 0))
266264, 265mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ≠ 0)
267123, 150, 266div2negd 10813 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-((ℝ D 𝐹)‘-𝑥) / -((ℝ D 𝐺)‘-𝑥)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))
268263, 267eqtrd 2655 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))
269268mpteq2dva 4742 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))))
270254, 269syl5eq 2667 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))))
271270oveq1d 6662 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) lim -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))) lim -𝐵))
272238, 271eleqtrrd 2703 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) lim -𝐵))
27379, 81, 84, 86, 88, 133, 160, 188, 195, 200, 219, 272lhop1 23771 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) lim -𝐵))
274 nffvmpt1 6197 . . . . . . . . 9 𝑥((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦)
275 nffvmpt1 6197 . . . . . . . . 9 𝑥((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦)
276274, 245, 275nfov 6673 . . . . . . . 8 𝑥(((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))
277 nfcv 2763 . . . . . . . 8 𝑦(((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))
278 fveq2 6189 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥))
279 fveq2 6189 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))
280278, 279oveq12d 6665 . . . . . . . 8 (𝑦 = 𝑥 → (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦)) = (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)))
281276, 277, 280cbvmpt 4747 . . . . . . 7 (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)))
282 fvex 6199 . . . . . . . . . 10 (𝐹‘-𝑥) ∈ V
28385fvmpt2 6289 . . . . . . . . . 10 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ (𝐹‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) = (𝐹‘-𝑥))
28426, 282, 283sylancl 694 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) = (𝐹‘-𝑥))
285 fvex 6199 . . . . . . . . . 10 (𝐺‘-𝑥) ∈ V
28687fvmpt2 6289 . . . . . . . . . 10 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ (𝐺‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥) = (𝐺‘-𝑥))
28726, 285, 286sylancl 694 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥) = (𝐺‘-𝑥))
288284, 287oveq12d 6665 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)) = ((𝐹‘-𝑥) / (𝐺‘-𝑥)))
289288mpteq2dva 4742 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))))
290281, 289syl5eq 2667 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))))
291290oveq1d 6662 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) lim -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))) lim -𝐵))
292273, 291eleqtrd 2702 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))) lim -𝐵))
293 negeq 10270 . . . . . 6 (𝑥 = -𝑧 → -𝑥 = --𝑧)
294293fveq2d 6193 . . . . 5 (𝑥 = -𝑧 → (𝐹‘-𝑥) = (𝐹‘--𝑧))
295293fveq2d 6193 . . . . 5 (𝑥 = -𝑧 → (𝐺‘-𝑥) = (𝐺‘--𝑧))
296294, 295oveq12d 6665 . . . 4 (𝑥 = -𝑧 → ((𝐹‘-𝑥) / (𝐺‘-𝑥)) = ((𝐹‘--𝑧) / (𝐺‘--𝑧)))
29779adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝐵 ∈ ℝ)
298 eliooord 12230 . . . . . . . . . . 11 (𝑧 ∈ (𝑎(,)𝐵) → (𝑎 < 𝑧𝑧 < 𝐵))
299298adantl 482 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑎 < 𝑧𝑧 < 𝐵))
300299simprd 479 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 < 𝐵)
30115, 13ltnegd 10602 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑧 < 𝐵 ↔ -𝐵 < -𝑧))
302300, 301mpbid 222 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝐵 < -𝑧)
303297, 302gtned 10169 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝑧 ≠ -𝐵)
304303neneqd 2798 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → ¬ -𝑧 = -𝐵)
305304pm2.21d 118 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (-𝑧 = -𝐵 → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = 𝐶))
306305impr 649 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑧 ∈ (𝑎(,)𝐵) ∧ -𝑧 = -𝐵)) → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = 𝐶)
30719, 65, 78, 292, 296, 306limcco 23651 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) lim 𝐵))
30815recnd 10065 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ ℂ)
309308negnegd 10380 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → --𝑧 = 𝑧)
310309fveq2d 6193 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝐹‘--𝑧) = (𝐹𝑧))
311309fveq2d 6193 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝐺‘--𝑧) = (𝐺𝑧))
312310, 311oveq12d 6665 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = ((𝐹𝑧) / (𝐺𝑧)))
313312mpteq2dva 4742 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) = (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))))
314313oveq1d 6662 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) lim 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
31541resmptd 5450 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))))
316315oveq1d 6662 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝑎(,)𝐵)) lim 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
317 fss 6054 . . . . . . . . 9 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
31893, 53, 317sylancl 694 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
319318ffvelrnda 6357 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
32055ffvelrnda 6357 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
32150ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran 𝐺)
32255, 57syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺 Fn (𝐴(,)𝐵))
323 fnfvelrn 6354 . . . . . . . . . . 11 ((𝐺 Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
324322, 323sylan 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
325 eleq1 2688 . . . . . . . . . 10 ((𝐺𝑧) = 0 → ((𝐺𝑧) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
326324, 325syl5ibcom 235 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝐺𝑧) = 0 → 0 ∈ ran 𝐺))
327326necon3bd 2807 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran 𝐺 → (𝐺𝑧) ≠ 0))
328321, 327mpd 15 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ≠ 0)
329319, 320, 328divcld 10798 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
330 eqid 2621 . . . . . 6 (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))
331329, 330fmptd 6383 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))):(𝐴(,)𝐵)⟶ℂ)
332 ioossre 12232 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
333332, 53sstri 3610 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
334333a1i 11 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴(,)𝐵) ⊆ ℂ)
335 eqid 2621 . . . . 5 ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))
336 ssun2 3775 . . . . . . 7 {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵})
337 snssg 4325 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}) ↔ {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵})))
33875, 337syl 17 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}) ↔ {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵})))
339336, 338mpbiri 248 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}))
340104cnfldtopon 22580 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
341332a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴(,)𝐵) ⊆ ℝ)
34275snssd 4338 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → {𝐵} ⊆ ℝ)
343341, 342unssd 3787 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ)
344343, 53syl6ss 3613 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℂ)
345 resttopon 20959 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵})))
346340, 344, 345sylancr 695 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵})))
347 topontop 20712 . . . . . . . 8 (((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵})) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
348346, 347syl 17 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
349 indi 3871 . . . . . . . . . 10 ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) = (((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) ∪ ((𝑎(,)+∞) ∩ {𝐵}))
350 pnfxr 10089 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
351350a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → +∞ ∈ ℝ*)
3524adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ℝ*)
353 iooin 12206 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵)))
35436, 351, 34, 352, 353syl22anc 1326 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵)))
355 xrltnle 10102 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝑎 ∈ ℝ*) → (𝐴 < 𝑎 ↔ ¬ 𝑎𝐴))
35634, 36, 355syl2anc 693 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴 < 𝑎 ↔ ¬ 𝑎𝐴))
35735, 356mpbid 222 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 𝑎𝐴)
358357iffalsed 4095 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → if(𝑎𝐴, 𝐴, 𝑎) = 𝑎)
359 ltpnf 11951 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → 𝐵 < +∞)
36075, 359syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 < +∞)
361 xrltnle 10102 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵))
362352, 350, 361sylancl 694 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵))
363360, 362mpbid 222 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ +∞ ≤ 𝐵)
364363iffalsed 4095 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → if(+∞ ≤ 𝐵, +∞, 𝐵) = 𝐵)
365358, 364oveq12d 6665 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (if(𝑎𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵)) = (𝑎(,)𝐵))
366354, 365eqtrd 2655 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (𝑎(,)𝐵))
367 elioopnf 12264 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ* → (𝐵 ∈ (𝑎(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑎 < 𝐵)))
36836, 367syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐵 ∈ (𝑎(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑎 < 𝐵)))
36975, 82, 368mpbir2and 957 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ (𝑎(,)+∞))
370369snssd 4338 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → {𝐵} ⊆ (𝑎(,)+∞))
371 sseqin2 3815 . . . . . . . . . . . 12 ({𝐵} ⊆ (𝑎(,)+∞) ↔ ((𝑎(,)+∞) ∩ {𝐵}) = {𝐵})
372370, 371sylib 208 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ {𝐵}) = {𝐵})
373366, 372uneq12d 3766 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) ∪ ((𝑎(,)+∞) ∩ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
374349, 373syl5eq 2667 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
375 retop 22559 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
376375a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (topGen‘ran (,)) ∈ Top)
377 reex 10024 . . . . . . . . . . . 12 ℝ ∈ V
378377ssex 4800 . . . . . . . . . . 11 (((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V)
379343, 378syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V)
380 iooretop 22563 . . . . . . . . . . 11 (𝑎(,)+∞) ∈ (topGen‘ran (,))
381380a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑎(,)+∞) ∈ (topGen‘ran (,)))
382 elrestr 16083 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V ∧ (𝑎(,)+∞) ∈ (topGen‘ran (,))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) ∈ ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
383376, 379, 381, 382syl3anc 1325 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) ∈ ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
384374, 383eqeltrrd 2701 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)𝐵) ∪ {𝐵}) ∈ ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
385 eqid 2621 . . . . . . . . . 10 (topGen‘ran (,)) = (topGen‘ran (,))
386104, 385rerest 22601 . . . . . . . . 9 (((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
387343, 386syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
388384, 387eleqtrrd 2703 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)𝐵) ∪ {𝐵}) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
389 isopn3i 20880 . . . . . . 7 ((((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top ∧ ((𝑎(,)𝐵) ∪ {𝐵}) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
390348, 388, 389syl2anc 693 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
391339, 390eleqtrrd 2703 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})))
392331, 41, 334, 104, 335, 391limcres 23644 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝑎(,)𝐵)) lim 𝐵) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
393314, 316, 3923eqtr2d 2661 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) lim 𝐵) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
394307, 393eleqtrd 2702 . 2 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
3959, 394rexlimddv 3033 1 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1482  wcel 1989  wne 2793  wrex 2912  Vcvv 3198  cun 3570  cin 3571  wss 3572  ifcif 4084  {csn 4175  {cpr 4177   class class class wbr 4651  cmpt 4727  dom cdm 5112  ran crn 5113  cres 5114   Fn wfn 5881  wf 5882  cfv 5886  (class class class)co 6647  cc 9931  cr 9932  0cc0 9933  1c1 9934   · cmul 9938  +∞cpnf 10068  *cxr 10070   < clt 10071  cle 10072  -cneg 10264   / cdiv 10681  cq 11785  (,)cioo 12172  t crest 16075  TopOpenctopn 16076  topGenctg 16092  fldccnfld 19740  Topctop 20692  TopOnctopon 20709  intcnt 20815  cnccncf 22673   lim climc 23620   D cdv 23621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-pre-sup 10011  ax-addf 10012  ax-mulf 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-of 6894  df-om 7063  df-1st 7165  df-2nd 7166  df-supp 7293  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-2o 7558  df-oadd 7561  df-er 7739  df-map 7856  df-pm 7857  df-ixp 7906  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fsupp 8273  df-fi 8314  df-sup 8345  df-inf 8346  df-oi 8412  df-card 8762  df-cda 8987  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-q 11786  df-rp 11830  df-xneg 11943  df-xadd 11944  df-xmul 11945  df-ioo 12176  df-ioc 12177  df-ico 12178  df-icc 12179  df-fz 12324  df-fzo 12462  df-seq 12797  df-exp 12856  df-hash 13113  df-cj 13833  df-re 13834  df-im 13835  df-sqrt 13969  df-abs 13970  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-mulr 15949  df-starv 15950  df-sca 15951  df-vsca 15952  df-ip 15953  df-tset 15954  df-ple 15955  df-ds 15958  df-unif 15959  df-hom 15960  df-cco 15961  df-rest 16077  df-topn 16078  df-0g 16096  df-gsum 16097  df-topgen 16098  df-pt 16099  df-prds 16102  df-xrs 16156  df-qtop 16161  df-imas 16162  df-xps 16164  df-mre 16240  df-mrc 16241  df-acs 16243  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-submnd 17330  df-mulg 17535  df-cntz 17744  df-cmn 18189  df-psmet 19732  df-xmet 19733  df-met 19734  df-bl 19735  df-mopn 19736  df-fbas 19737  df-fg 19738  df-cnfld 19741  df-top 20693  df-topon 20710  df-topsp 20731  df-bases 20744  df-cld 20817  df-ntr 20818  df-cls 20819  df-nei 20896  df-lp 20934  df-perf 20935  df-cn 21025  df-cnp 21026  df-haus 21113  df-cmp 21184  df-tx 21359  df-hmeo 21552  df-fil 21644  df-fm 21736  df-flim 21737  df-flf 21738  df-xms 22119  df-ms 22120  df-tms 22121  df-cncf 22675  df-limc 23624  df-dv 23625
This theorem is referenced by:  lhop  23773  fourierdlem60  40152
  Copyright terms: Public domain W3C validator