MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsval Structured version   Visualization version   GIF version

Theorem lgsval 25247
Description: Value of the Legendre symbol at an arbitrary integer. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsval ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsval
Dummy variables 𝑎 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 471 . . . 4 ((𝑎 = 𝐴𝑚 = 𝑁) → 𝑚 = 𝑁)
21eqeq1d 2773 . . 3 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑚 = 0 ↔ 𝑁 = 0))
3 simpl 468 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑁) → 𝑎 = 𝐴)
43oveq1d 6808 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑎↑2) = (𝐴↑2))
54eqeq1d 2773 . . . 4 ((𝑎 = 𝐴𝑚 = 𝑁) → ((𝑎↑2) = 1 ↔ (𝐴↑2) = 1))
65ifbid 4247 . . 3 ((𝑎 = 𝐴𝑚 = 𝑁) → if((𝑎↑2) = 1, 1, 0) = if((𝐴↑2) = 1, 1, 0))
71breq1d 4796 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑚 < 0 ↔ 𝑁 < 0))
83breq1d 4796 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑎 < 0 ↔ 𝐴 < 0))
97, 8anbi12d 616 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑁) → ((𝑚 < 0 ∧ 𝑎 < 0) ↔ (𝑁 < 0 ∧ 𝐴 < 0)))
109ifbid 4247 . . . 4 ((𝑎 = 𝐴𝑚 = 𝑁) → if((𝑚 < 0 ∧ 𝑎 < 0), -1, 1) = if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
113breq2d 4798 . . . . . . . . . . . 12 ((𝑎 = 𝐴𝑚 = 𝑁) → (2 ∥ 𝑎 ↔ 2 ∥ 𝐴))
123oveq1d 6808 . . . . . . . . . . . . . 14 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑎 mod 8) = (𝐴 mod 8))
1312eleq1d 2835 . . . . . . . . . . . . 13 ((𝑎 = 𝐴𝑚 = 𝑁) → ((𝑎 mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
1413ifbid 4247 . . . . . . . . . . . 12 ((𝑎 = 𝐴𝑚 = 𝑁) → if((𝑎 mod 8) ∈ {1, 7}, 1, -1) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
1511, 14ifbieq2d 4250 . . . . . . . . . . 11 ((𝑎 = 𝐴𝑚 = 𝑁) → if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
163oveq1d 6808 . . . . . . . . . . . . . 14 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑎↑((𝑛 − 1) / 2)) = (𝐴↑((𝑛 − 1) / 2)))
1716oveq1d 6808 . . . . . . . . . . . . 13 ((𝑎 = 𝐴𝑚 = 𝑁) → ((𝑎↑((𝑛 − 1) / 2)) + 1) = ((𝐴↑((𝑛 − 1) / 2)) + 1))
1817oveq1d 6808 . . . . . . . . . . . 12 ((𝑎 = 𝐴𝑚 = 𝑁) → (((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛))
1918oveq1d 6808 . . . . . . . . . . 11 ((𝑎 = 𝐴𝑚 = 𝑁) → ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
2015, 19ifeq12d 4245 . . . . . . . . . 10 ((𝑎 = 𝐴𝑚 = 𝑁) → if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) = if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)))
211oveq2d 6809 . . . . . . . . . 10 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑛 pCnt 𝑚) = (𝑛 pCnt 𝑁))
2220, 21oveq12d 6811 . . . . . . . . 9 ((𝑎 = 𝐴𝑚 = 𝑁) → (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)) = (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)))
2322ifeq1d 4243 . . . . . . . 8 ((𝑎 = 𝐴𝑚 = 𝑁) → if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1) = if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
2423mpteq2dv 4879 . . . . . . 7 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)))
25 lgsval.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
2624, 25syl6eqr 2823 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)) = 𝐹)
2726seqeq3d 13016 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑁) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1))) = seq1( · , 𝐹))
281fveq2d 6336 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑁) → (abs‘𝑚) = (abs‘𝑁))
2927, 28fveq12d 6338 . . . 4 ((𝑎 = 𝐴𝑚 = 𝑁) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)))‘(abs‘𝑚)) = (seq1( · , 𝐹)‘(abs‘𝑁)))
3010, 29oveq12d 6811 . . 3 ((𝑎 = 𝐴𝑚 = 𝑁) → (if((𝑚 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)))‘(abs‘𝑚))) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))
312, 6, 30ifbieq12d 4252 . 2 ((𝑎 = 𝐴𝑚 = 𝑁) → if(𝑚 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑚 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)))‘(abs‘𝑚)))) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
32 df-lgs 25241 . 2 /L = (𝑎 ∈ ℤ, 𝑚 ∈ ℤ ↦ if(𝑚 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑚 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)))‘(abs‘𝑚)))))
33 1nn0 11510 . . . . 5 1 ∈ ℕ0
34 0nn0 11509 . . . . 5 0 ∈ ℕ0
3533, 34keepel 4294 . . . 4 if((𝐴↑2) = 1, 1, 0) ∈ ℕ0
3635elexi 3365 . . 3 if((𝐴↑2) = 1, 1, 0) ∈ V
37 ovex 6823 . . 3 (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ V
3836, 37ifex 4295 . 2 if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) ∈ V
3931, 32, 38ovmpt2a 6938 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  ifcif 4225  {cpr 4318   class class class wbr 4786  cmpt 4863  cfv 6031  (class class class)co 6793  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143   < clt 10276  cmin 10468  -cneg 10469   / cdiv 10886  cn 11222  2c2 11272  7c7 11277  8c8 11278  0cn0 11494  cz 11579   mod cmo 12876  seqcseq 13008  cexp 13067  abscabs 14182  cdvds 15189  cprime 15592   pCnt cpc 15748   /L clgs 25240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-mulcl 10200  ax-i2m1 10206
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-nn 11223  df-n0 11495  df-seq 13009  df-lgs 25241
This theorem is referenced by:  lgscllem  25250  lgsval2lem  25253  lgs0  25256  lgsval4  25263
  Copyright terms: Public domain W3C validator