MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad3 Structured version   Visualization version   GIF version

Theorem lgsquad3 25311
Description: Extend lgsquad2 25310 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
lgsquad3 (((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))

Proof of Theorem lgsquad3
StepHypRef Expression
1 simplrl 819 . . . . . . . . . 10 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℕ)
2 nnz 11591 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
31, 2syl 17 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
4 nnz 11591 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
54ad3antrrr 768 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ)
6 lgscl 25235 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 /L 𝑀) ∈ ℤ)
73, 5, 6syl2anc 696 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℤ)
87zred 11674 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℝ)
9 absresq 14241 . . . . . . 7 ((𝑁 /L 𝑀) ∈ ℝ → ((abs‘(𝑁 /L 𝑀))↑2) = ((𝑁 /L 𝑀)↑2))
108, 9syl 17 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = ((𝑁 /L 𝑀)↑2))
11 gcdcom 15437 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
123, 5, 11syl2anc 696 . . . . . . . . . 10 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
13 simpr 479 . . . . . . . . . 10 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1)
1412, 13eqtrd 2794 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = 1)
15 lgsabs1 25260 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((abs‘(𝑁 /L 𝑀)) = 1 ↔ (𝑁 gcd 𝑀) = 1))
163, 5, 15syl2anc 696 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀)) = 1 ↔ (𝑁 gcd 𝑀) = 1))
1714, 16mpbird 247 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (abs‘(𝑁 /L 𝑀)) = 1)
1817oveq1d 6828 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = (1↑2))
19 sq1 13152 . . . . . . 7 (1↑2) = 1
2018, 19syl6eq 2810 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = 1)
217zcnd 11675 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℂ)
2221sqvald 13199 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑁 /L 𝑀)↑2) = ((𝑁 /L 𝑀) · (𝑁 /L 𝑀)))
2310, 20, 223eqtr3d 2802 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 1 = ((𝑁 /L 𝑀) · (𝑁 /L 𝑀)))
2423oveq2d 6829 . . . 4 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = ((𝑀 /L 𝑁) · ((𝑁 /L 𝑀) · (𝑁 /L 𝑀))))
25 lgscl 25235 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 /L 𝑁) ∈ ℤ)
265, 3, 25syl2anc 696 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) ∈ ℤ)
2726zcnd 11675 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) ∈ ℂ)
2827, 21, 21mulassd 10255 . . . 4 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)) = ((𝑀 /L 𝑁) · ((𝑁 /L 𝑀) · (𝑁 /L 𝑀))))
2924, 28eqtr4d 2797 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)))
3027mulid1d 10249 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = (𝑀 /L 𝑁))
31 simplll 815 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℕ)
32 simpllr 817 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑀)
33 simplrr 820 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑁)
3431, 32, 1, 33, 13lgsquad2 25310 . . . 4 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
3534oveq1d 6828 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))
3629, 30, 353eqtr3d 2802 . 2 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))
37 neg1cn 11316 . . . . . 6 -1 ∈ ℂ
3837a1i 11 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → -1 ∈ ℂ)
39 neg1ne0 11318 . . . . . 6 -1 ≠ 0
4039a1i 11 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → -1 ≠ 0)
414ad3antrrr 768 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ)
42 simpllr 817 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑀)
43 1zzd 11600 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 1 ∈ ℤ)
44 2prm 15607 . . . . . . . . 9 2 ∈ ℙ
45 nprmdvds1 15620 . . . . . . . . 9 (2 ∈ ℙ → ¬ 2 ∥ 1)
4644, 45mp1i 13 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 1)
47 omoe 15290 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ ¬ 2 ∥ 𝑀) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑀 − 1))
4841, 42, 43, 46, 47syl22anc 1478 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 2 ∥ (𝑀 − 1))
49 2z 11601 . . . . . . . . 9 2 ∈ ℤ
5049a1i 11 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 2 ∈ ℤ)
51 2ne0 11305 . . . . . . . . 9 2 ≠ 0
5251a1i 11 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 2 ≠ 0)
53 peano2zm 11612 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
5441, 53syl 17 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (𝑀 − 1) ∈ ℤ)
55 dvdsval2 15185 . . . . . . . 8 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑀 − 1) ∈ ℤ) → (2 ∥ (𝑀 − 1) ↔ ((𝑀 − 1) / 2) ∈ ℤ))
5650, 52, 54, 55syl3anc 1477 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (2 ∥ (𝑀 − 1) ↔ ((𝑀 − 1) / 2) ∈ ℤ))
5748, 56mpbid 222 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ((𝑀 − 1) / 2) ∈ ℤ)
582adantr 472 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℤ)
5958ad2antlr 765 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
60 simplrr 820 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑁)
61 omoe 15290 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1))
6259, 60, 43, 46, 61syl22anc 1478 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 2 ∥ (𝑁 − 1))
63 peano2zm 11612 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
6459, 63syl 17 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (𝑁 − 1) ∈ ℤ)
65 dvdsval2 15185 . . . . . . . 8 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
6650, 52, 64, 65syl3anc 1477 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
6762, 66mpbid 222 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ((𝑁 − 1) / 2) ∈ ℤ)
6857, 67zmulcld 11680 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)) ∈ ℤ)
6938, 40, 68expclzd 13207 . . . 4 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ∈ ℂ)
7069mul01d 10427 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · 0) = 0)
71 lgsne0 25259 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑁 gcd 𝑀) = 1))
7211eqeq1d 2762 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 gcd 𝑀) = 1 ↔ (𝑀 gcd 𝑁) = 1))
7371, 72bitrd 268 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1))
742, 4, 73syl2anr 496 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1))
7574necon1bbid 2971 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑁 /L 𝑀) = 0))
7675ad2ant2r 800 . . . . 5 (((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑁 /L 𝑀) = 0))
7776biimpa 502 . . . 4 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) = 0)
7877oveq2d 6829 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · 0))
79 lgsne0 25259 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 /L 𝑁) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1))
8079necon1bbid 2971 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0))
814, 2, 80syl2an 495 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0))
8281ad2ant2r 800 . . . 4 (((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0))
8382biimpa 502 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = 0)
8470, 78, 833eqtr4rd 2805 . 2 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))
8536, 84pm2.61dan 867 1 (((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   · cmul 10133  cmin 10458  -cneg 10459   / cdiv 10876  cn 11212  2c2 11262  cz 11569  cexp 13054  abscabs 14173  cdvds 15182   gcd cgcd 15418  cprime 15587   /L clgs 25218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-ec 7913  df-qs 7917  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-xnn0 11556  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616  df-dvds 15183  df-gcd 15419  df-prm 15588  df-phi 15673  df-pc 15744  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-0g 16304  df-gsum 16305  df-imas 16370  df-qus 16371  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-nsg 17793  df-eqg 17794  df-ghm 17859  df-cntz 17950  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-rnghom 18917  df-drng 18951  df-field 18952  df-subrg 18980  df-lmod 19067  df-lss 19135  df-lsp 19174  df-sra 19374  df-rgmod 19375  df-lidl 19376  df-rsp 19377  df-2idl 19434  df-nzr 19460  df-rlreg 19485  df-domn 19486  df-idom 19487  df-cnfld 19949  df-zring 20021  df-zrh 20054  df-zn 20057  df-lgs 25219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator