Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad2 Structured version   Visualization version   GIF version

Theorem lgsquad2 25331
 Description: Extend lgsquad 25328 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1 (𝜑𝑀 ∈ ℕ)
lgsquad2.2 (𝜑 → ¬ 2 ∥ 𝑀)
lgsquad2.3 (𝜑𝑁 ∈ ℕ)
lgsquad2.4 (𝜑 → ¬ 2 ∥ 𝑁)
lgsquad2.5 (𝜑 → (𝑀 gcd 𝑁) = 1)
Assertion
Ref Expression
lgsquad2 (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))

Proof of Theorem lgsquad2
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsquad2.1 . 2 (𝜑𝑀 ∈ ℕ)
2 lgsquad2.2 . 2 (𝜑 → ¬ 2 ∥ 𝑀)
3 lgsquad2.3 . 2 (𝜑𝑁 ∈ ℕ)
4 lgsquad2.4 . 2 (𝜑 → ¬ 2 ∥ 𝑁)
5 lgsquad2.5 . 2 (𝜑 → (𝑀 gcd 𝑁) = 1)
63adantr 466 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑁 ∈ ℕ)
74adantr 466 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ¬ 2 ∥ 𝑁)
8 simprl 746 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ (ℙ ∖ {2}))
9 eldifi 3881 . . . . . 6 (𝑚 ∈ (ℙ ∖ {2}) → 𝑚 ∈ ℙ)
108, 9syl 17 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ ℙ)
11 prmnn 15594 . . . . 5 (𝑚 ∈ ℙ → 𝑚 ∈ ℕ)
1210, 11syl 17 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ ℕ)
13 eldifsni 4455 . . . . . . . 8 (𝑚 ∈ (ℙ ∖ {2}) → 𝑚 ≠ 2)
148, 13syl 17 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ≠ 2)
1514necomd 2997 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 2 ≠ 𝑚)
1615neneqd 2947 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ¬ 2 = 𝑚)
17 2z 11610 . . . . . . 7 2 ∈ ℤ
18 uzid 11902 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
1917, 18ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
20 dvdsprm 15621 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝑚 ∈ ℙ) → (2 ∥ 𝑚 ↔ 2 = 𝑚))
2119, 10, 20sylancr 567 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (2 ∥ 𝑚 ↔ 2 = 𝑚))
2216, 21mtbird 314 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ¬ 2 ∥ 𝑚)
236nnzd 11682 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑁 ∈ ℤ)
2412nnzd 11682 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ ℤ)
25 gcdcom 15442 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑁 gcd 𝑚) = (𝑚 gcd 𝑁))
2623, 24, 25syl2anc 565 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑁 gcd 𝑚) = (𝑚 gcd 𝑁))
27 simprr 748 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑚 gcd 𝑁) = 1)
2826, 27eqtrd 2804 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑁 gcd 𝑚) = 1)
29 simprl 746 . . . . 5 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ (𝑛 ∈ (ℙ ∖ {2}) ∧ (𝑛 gcd 𝑚) = 1)) → 𝑛 ∈ (ℙ ∖ {2}))
308adantr 466 . . . . 5 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ (𝑛 ∈ (ℙ ∖ {2}) ∧ (𝑛 gcd 𝑚) = 1)) → 𝑚 ∈ (ℙ ∖ {2}))
31 eldifi 3881 . . . . . . . 8 (𝑛 ∈ (ℙ ∖ {2}) → 𝑛 ∈ ℙ)
32 prmrp 15630 . . . . . . . 8 ((𝑛 ∈ ℙ ∧ 𝑚 ∈ ℙ) → ((𝑛 gcd 𝑚) = 1 ↔ 𝑛𝑚))
3331, 10, 32syl2anr 576 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((𝑛 gcd 𝑚) = 1 ↔ 𝑛𝑚))
3433biimpd 219 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((𝑛 gcd 𝑚) = 1 → 𝑛𝑚))
3534impr 442 . . . . 5 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ (𝑛 ∈ (ℙ ∖ {2}) ∧ (𝑛 gcd 𝑚) = 1)) → 𝑛𝑚)
36 lgsquad 25328 . . . . 5 ((𝑛 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ (ℙ ∖ {2}) ∧ 𝑛𝑚) → ((𝑛 /L 𝑚) · (𝑚 /L 𝑛)) = (-1↑(((𝑛 − 1) / 2) · ((𝑚 − 1) / 2))))
3729, 30, 35, 36syl3anc 1475 . . . 4 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ (𝑛 ∈ (ℙ ∖ {2}) ∧ (𝑛 gcd 𝑚) = 1)) → ((𝑛 /L 𝑚) · (𝑚 /L 𝑛)) = (-1↑(((𝑛 − 1) / 2) · ((𝑚 − 1) / 2))))
38 biid 251 . . . 4 (∀𝑥 ∈ (1...𝑦)((𝑥 gcd (2 · 𝑚)) = 1 → ((𝑥 /L 𝑚) · (𝑚 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑚 − 1) / 2)))) ↔ ∀𝑥 ∈ (1...𝑦)((𝑥 gcd (2 · 𝑚)) = 1 → ((𝑥 /L 𝑚) · (𝑚 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑚 − 1) / 2)))))
396, 7, 12, 22, 28, 37, 38lgsquad2lem2 25330 . . 3 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑁 /L 𝑚) · (𝑚 /L 𝑁)) = (-1↑(((𝑁 − 1) / 2) · ((𝑚 − 1) / 2))))
40 lgscl 25256 . . . . 5 ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑚 /L 𝑁) ∈ ℤ)
4124, 23, 40syl2anc 565 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑚 /L 𝑁) ∈ ℤ)
42 lgscl 25256 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑁 /L 𝑚) ∈ ℤ)
4323, 24, 42syl2anc 565 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑁 /L 𝑚) ∈ ℤ)
44 zcn 11583 . . . . 5 ((𝑚 /L 𝑁) ∈ ℤ → (𝑚 /L 𝑁) ∈ ℂ)
45 zcn 11583 . . . . 5 ((𝑁 /L 𝑚) ∈ ℤ → (𝑁 /L 𝑚) ∈ ℂ)
46 mulcom 10223 . . . . 5 (((𝑚 /L 𝑁) ∈ ℂ ∧ (𝑁 /L 𝑚) ∈ ℂ) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑁 /L 𝑚) · (𝑚 /L 𝑁)))
4744, 45, 46syl2an 575 . . . 4 (((𝑚 /L 𝑁) ∈ ℤ ∧ (𝑁 /L 𝑚) ∈ ℤ) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑁 /L 𝑚) · (𝑚 /L 𝑁)))
4841, 43, 47syl2anc 565 . . 3 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑁 /L 𝑚) · (𝑚 /L 𝑁)))
4912nncnd 11237 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ ℂ)
50 ax-1cn 10195 . . . . . . 7 1 ∈ ℂ
51 subcl 10481 . . . . . . 7 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑚 − 1) ∈ ℂ)
5249, 50, 51sylancl 566 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑚 − 1) ∈ ℂ)
5352halfcld 11478 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 − 1) / 2) ∈ ℂ)
546nncnd 11237 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑁 ∈ ℂ)
55 subcl 10481 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ)
5654, 50, 55sylancl 566 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑁 − 1) ∈ ℂ)
5756halfcld 11478 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑁 − 1) / 2) ∈ ℂ)
5853, 57mulcomd 10262 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)) = (((𝑁 − 1) / 2) · ((𝑚 − 1) / 2)))
5958oveq2d 6808 . . 3 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑(((𝑁 − 1) / 2) · ((𝑚 − 1) / 2))))
6039, 48, 593eqtr4d 2814 . 2 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))
61 biid 251 . 2 (∀𝑥 ∈ (1...𝑦)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ↔ ∀𝑥 ∈ (1...𝑦)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))))
621, 2, 3, 4, 5, 60, 61lgsquad2lem2 25330 1 (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1630   ∈ wcel 2144   ≠ wne 2942  ∀wral 3060   ∖ cdif 3718  {csn 4314   class class class wbr 4784  ‘cfv 6031  (class class class)co 6792  ℂcc 10135  1c1 10138   · cmul 10142   − cmin 10467  -cneg 10468   / cdiv 10885  ℕcn 11221  2c2 11271  ℤcz 11578  ℤ≥cuz 11887  ...cfz 12532  ↑cexp 13066   ∥ cdvds 15188   gcd cgcd 15423  ℙcprime 15591   /L clgs 25239 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-disj 4753  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-ec 7897  df-qs 7901  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-xnn0 11565  df-z 11579  df-dec 11695  df-uz 11888  df-q 11991  df-rp 12035  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624  df-dvds 15189  df-gcd 15424  df-prm 15592  df-phi 15677  df-pc 15748  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-0g 16309  df-gsum 16310  df-imas 16375  df-qus 16376  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-mulg 17748  df-subg 17798  df-nsg 17799  df-eqg 17800  df-ghm 17865  df-cntz 17956  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-cring 18757  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-dvr 18890  df-rnghom 18924  df-drng 18958  df-field 18959  df-subrg 18987  df-lmod 19074  df-lss 19142  df-lsp 19184  df-sra 19386  df-rgmod 19387  df-lidl 19388  df-rsp 19389  df-2idl 19446  df-nzr 19472  df-rlreg 19497  df-domn 19498  df-idom 19499  df-cnfld 19961  df-zring 20033  df-zrh 20066  df-zn 20069  df-lgs 25240 This theorem is referenced by:  lgsquad3  25332
 Copyright terms: Public domain W3C validator