Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem4 Structured version   Visualization version   GIF version

Theorem lgsqrlem4 25008
 Description: Lemma for lgsqr 25010. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = ( deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqr.g 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
lgsqr.3 (𝜑𝐴 ∈ ℤ)
lgsqr.4 (𝜑 → (𝐴 /L 𝑃) = 1)
Assertion
Ref Expression
lgsqrlem4 (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑦,𝑂   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑇   𝑥,𝐿,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥)   1 (𝑥,𝑦)   (𝑥,𝑦)   𝐺(𝑦)   (𝑥,𝑦)   𝑂(𝑥)   𝑋(𝑥,𝑦)

Proof of Theorem lgsqrlem4
StepHypRef Expression
1 lgsqr.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑃)
2 lgsqr.s . . . . . . 7 𝑆 = (Poly1𝑌)
3 lgsqr.b . . . . . . 7 𝐵 = (Base‘𝑆)
4 lgsqr.d . . . . . . 7 𝐷 = ( deg1𝑌)
5 lgsqr.o . . . . . . 7 𝑂 = (eval1𝑌)
6 lgsqr.e . . . . . . 7 = (.g‘(mulGrp‘𝑆))
7 lgsqr.x . . . . . . 7 𝑋 = (var1𝑌)
8 lgsqr.m . . . . . . 7 = (-g𝑆)
9 lgsqr.u . . . . . . 7 1 = (1r𝑆)
10 lgsqr.t . . . . . . 7 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
11 lgsqr.l . . . . . . 7 𝐿 = (ℤRHom‘𝑌)
12 lgsqr.1 . . . . . . 7 (𝜑𝑃 ∈ (ℙ ∖ {2}))
13 lgsqr.g . . . . . . 7 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13lgsqrlem2 25006 . . . . . 6 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}))
15 fvex 6168 . . . . . . . . . . . 12 (𝑂𝑇) ∈ V
1615cnvex 7075 . . . . . . . . . . 11 (𝑂𝑇) ∈ V
1716imaex 7066 . . . . . . . . . 10 ((𝑂𝑇) “ {(0g𝑌)}) ∈ V
1817f1dom 7937 . . . . . . . . 9 (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) → (1...((𝑃 − 1) / 2)) ≼ ((𝑂𝑇) “ {(0g𝑌)}))
1914, 18syl 17 . . . . . . . 8 (𝜑 → (1...((𝑃 − 1) / 2)) ≼ ((𝑂𝑇) “ {(0g𝑌)}))
20 eqid 2621 . . . . . . . . . . . 12 (0g𝑌) = (0g𝑌)
21 eqid 2621 . . . . . . . . . . . 12 (0g𝑆) = (0g𝑆)
2212eldifad 3572 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℙ)
231znfld 19849 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
2422, 23syl 17 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ Field)
25 fldidom 19245 . . . . . . . . . . . . 13 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
2624, 25syl 17 . . . . . . . . . . . 12 (𝜑𝑌 ∈ IDomn)
27 isidom 19244 . . . . . . . . . . . . . . . . . . 19 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
2827simplbi 476 . . . . . . . . . . . . . . . . . 18 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
2926, 28syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑌 ∈ CRing)
30 crngring 18498 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
3129, 30syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ Ring)
322ply1ring 19558 . . . . . . . . . . . . . . . 16 (𝑌 ∈ Ring → 𝑆 ∈ Ring)
3331, 32syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ Ring)
34 ringgrp 18492 . . . . . . . . . . . . . . 15 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
3533, 34syl 17 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ Grp)
36 eqid 2621 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝑆) = (mulGrp‘𝑆)
3736ringmgp 18493 . . . . . . . . . . . . . . . 16 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
3833, 37syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
39 oddprm 15458 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
4012, 39syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
4140nnnn0d 11311 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
427, 2, 3vr1cl 19527 . . . . . . . . . . . . . . . 16 (𝑌 ∈ Ring → 𝑋𝐵)
4331, 42syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋𝐵)
4436, 3mgpbas 18435 . . . . . . . . . . . . . . . 16 𝐵 = (Base‘(mulGrp‘𝑆))
4544, 6mulgnn0cl 17498 . . . . . . . . . . . . . . 15 (((mulGrp‘𝑆) ∈ Mnd ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑋𝐵) → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
4638, 41, 43, 45syl3anc 1323 . . . . . . . . . . . . . 14 (𝜑 → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
473, 9ringidcl 18508 . . . . . . . . . . . . . . 15 (𝑆 ∈ Ring → 1𝐵)
4833, 47syl 17 . . . . . . . . . . . . . 14 (𝜑1𝐵)
493, 8grpsubcl 17435 . . . . . . . . . . . . . 14 ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵1𝐵) → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
5035, 46, 48, 49syl3anc 1323 . . . . . . . . . . . . 13 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
5110, 50syl5eqel 2702 . . . . . . . . . . . 12 (𝜑𝑇𝐵)
5210fveq2i 6161 . . . . . . . . . . . . . . . 16 (𝐷𝑇) = (𝐷‘((((𝑃 − 1) / 2) 𝑋) 1 ))
5340nngt0d 11024 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < ((𝑃 − 1) / 2))
54 eqid 2621 . . . . . . . . . . . . . . . . . . . . . 22 (algSc‘𝑆) = (algSc‘𝑆)
55 eqid 2621 . . . . . . . . . . . . . . . . . . . . . 22 (1r𝑌) = (1r𝑌)
562, 54, 55, 9ply1scl1 19602 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ Ring → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
5731, 56syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
5857fveq2d 6162 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷‘((algSc‘𝑆)‘(1r𝑌))) = (𝐷1 ))
59 eqid 2621 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝑌) = (Base‘𝑌)
6059, 55ringidcl 18508 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ Ring → (1r𝑌) ∈ (Base‘𝑌))
6131, 60syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1r𝑌) ∈ (Base‘𝑌))
62 domnnzr 19235 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 ∈ Domn → 𝑌 ∈ NzRing)
6327, 62simplbiim 658 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 ∈ IDomn → 𝑌 ∈ NzRing)
6426, 63syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ NzRing)
6555, 20nzrnz 19200 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ NzRing → (1r𝑌) ≠ (0g𝑌))
6664, 65syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1r𝑌) ≠ (0g𝑌))
674, 2, 59, 54, 20deg1scl 23811 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 ∈ Ring ∧ (1r𝑌) ∈ (Base‘𝑌) ∧ (1r𝑌) ≠ (0g𝑌)) → (𝐷‘((algSc‘𝑆)‘(1r𝑌))) = 0)
6831, 61, 66, 67syl3anc 1323 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷‘((algSc‘𝑆)‘(1r𝑌))) = 0)
6958, 68eqtr3d 2657 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷1 ) = 0)
704, 2, 7, 36, 6deg1pw 23818 . . . . . . . . . . . . . . . . . . 19 ((𝑌 ∈ NzRing ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐷‘(((𝑃 − 1) / 2) 𝑋)) = ((𝑃 − 1) / 2))
7164, 41, 70syl2anc 692 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷‘(((𝑃 − 1) / 2) 𝑋)) = ((𝑃 − 1) / 2))
7253, 69, 713brtr4d 4655 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷1 ) < (𝐷‘(((𝑃 − 1) / 2) 𝑋)))
732, 4, 31, 3, 8, 46, 48, 72deg1sub 23806 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷‘((((𝑃 − 1) / 2) 𝑋) 1 )) = (𝐷‘(((𝑃 − 1) / 2) 𝑋)))
7452, 73syl5eq 2667 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝑇) = (𝐷‘(((𝑃 − 1) / 2) 𝑋)))
7574, 71eqtrd 2655 . . . . . . . . . . . . . 14 (𝜑 → (𝐷𝑇) = ((𝑃 − 1) / 2))
7675, 41eqeltrd 2698 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝑇) ∈ ℕ0)
774, 2, 21, 3deg1nn0clb 23788 . . . . . . . . . . . . . 14 ((𝑌 ∈ Ring ∧ 𝑇𝐵) → (𝑇 ≠ (0g𝑆) ↔ (𝐷𝑇) ∈ ℕ0))
7831, 51, 77syl2anc 692 . . . . . . . . . . . . 13 (𝜑 → (𝑇 ≠ (0g𝑆) ↔ (𝐷𝑇) ∈ ℕ0))
7976, 78mpbird 247 . . . . . . . . . . . 12 (𝜑𝑇 ≠ (0g𝑆))
802, 3, 4, 5, 20, 21, 26, 51, 79fta1g 23865 . . . . . . . . . . 11 (𝜑 → (#‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (𝐷𝑇))
8180, 75breqtrd 4649 . . . . . . . . . 10 (𝜑 → (#‘((𝑂𝑇) “ {(0g𝑌)})) ≤ ((𝑃 − 1) / 2))
82 hashfz1 13090 . . . . . . . . . . 11 (((𝑃 − 1) / 2) ∈ ℕ0 → (#‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
8341, 82syl 17 . . . . . . . . . 10 (𝜑 → (#‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
8481, 83breqtrrd 4651 . . . . . . . . 9 (𝜑 → (#‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (#‘(1...((𝑃 − 1) / 2))))
85 hashbnd 13079 . . . . . . . . . . 11 ((((𝑂𝑇) “ {(0g𝑌)}) ∈ V ∧ ((𝑃 − 1) / 2) ∈ ℕ0 ∧ (#‘((𝑂𝑇) “ {(0g𝑌)})) ≤ ((𝑃 − 1) / 2)) → ((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin)
8617, 41, 81, 85mp3an2i 1426 . . . . . . . . . 10 (𝜑 → ((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin)
87 fzfid 12728 . . . . . . . . . 10 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
88 hashdom 13124 . . . . . . . . . 10 ((((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin ∧ (1...((𝑃 − 1) / 2)) ∈ Fin) → ((#‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (#‘(1...((𝑃 − 1) / 2))) ↔ ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2))))
8986, 87, 88syl2anc 692 . . . . . . . . 9 (𝜑 → ((#‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (#‘(1...((𝑃 − 1) / 2))) ↔ ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2))))
9084, 89mpbid 222 . . . . . . . 8 (𝜑 → ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2)))
91 sbth 8040 . . . . . . . 8 (((1...((𝑃 − 1) / 2)) ≼ ((𝑂𝑇) “ {(0g𝑌)}) ∧ ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2))) → (1...((𝑃 − 1) / 2)) ≈ ((𝑂𝑇) “ {(0g𝑌)}))
9219, 90, 91syl2anc 692 . . . . . . 7 (𝜑 → (1...((𝑃 − 1) / 2)) ≈ ((𝑂𝑇) “ {(0g𝑌)}))
93 f1finf1o 8147 . . . . . . 7 (((1...((𝑃 − 1) / 2)) ≈ ((𝑂𝑇) “ {(0g𝑌)}) ∧ ((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin) → (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) ↔ 𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)})))
9492, 86, 93syl2anc 692 . . . . . 6 (𝜑 → (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) ↔ 𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)})))
9514, 94mpbid 222 . . . . 5 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)}))
96 f1ocnv 6116 . . . . 5 (𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)}) → 𝐺:((𝑂𝑇) “ {(0g𝑌)})–1-1-onto→(1...((𝑃 − 1) / 2)))
97 f1of 6104 . . . . 5 (𝐺:((𝑂𝑇) “ {(0g𝑌)})–1-1-onto→(1...((𝑃 − 1) / 2)) → 𝐺:((𝑂𝑇) “ {(0g𝑌)})⟶(1...((𝑃 − 1) / 2)))
9895, 96, 973syl 18 . . . 4 (𝜑𝐺:((𝑂𝑇) “ {(0g𝑌)})⟶(1...((𝑃 − 1) / 2)))
99 lgsqr.3 . . . . 5 (𝜑𝐴 ∈ ℤ)
100 lgsqr.4 . . . . 5 (𝜑 → (𝐴 /L 𝑃) = 1)
1011, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 99, 100lgsqrlem3 25007 . . . 4 (𝜑 → (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
10298, 101ffvelrnd 6326 . . 3 (𝜑 → (𝐺‘(𝐿𝐴)) ∈ (1...((𝑃 − 1) / 2)))
103 elfzelz 12300 . . 3 ((𝐺‘(𝐿𝐴)) ∈ (1...((𝑃 − 1) / 2)) → (𝐺‘(𝐿𝐴)) ∈ ℤ)
104102, 103syl 17 . 2 (𝜑 → (𝐺‘(𝐿𝐴)) ∈ ℤ)
105 oveq1 6622 . . . . . . 7 (𝑥 = (𝐺‘(𝐿𝐴)) → (𝑥↑2) = ((𝐺‘(𝐿𝐴))↑2))
106105fveq2d 6162 . . . . . 6 (𝑥 = (𝐺‘(𝐿𝐴)) → (𝐿‘(𝑥↑2)) = (𝐿‘((𝐺‘(𝐿𝐴))↑2)))
107 oveq1 6622 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦↑2) = (𝑥↑2))
108107fveq2d 6162 . . . . . . . 8 (𝑦 = 𝑥 → (𝐿‘(𝑦↑2)) = (𝐿‘(𝑥↑2)))
109108cbvmptv 4720 . . . . . . 7 (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑥↑2)))
11013, 109eqtri 2643 . . . . . 6 𝐺 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑥↑2)))
111 fvex 6168 . . . . . 6 (𝐿‘((𝐺‘(𝐿𝐴))↑2)) ∈ V
112106, 110, 111fvmpt 6249 . . . . 5 ((𝐺‘(𝐿𝐴)) ∈ (1...((𝑃 − 1) / 2)) → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿‘((𝐺‘(𝐿𝐴))↑2)))
113102, 112syl 17 . . . 4 (𝜑 → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿‘((𝐺‘(𝐿𝐴))↑2)))
114 f1ocnvfv2 6498 . . . . 5 ((𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)}) ∧ (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)})) → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿𝐴))
11595, 101, 114syl2anc 692 . . . 4 (𝜑 → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿𝐴))
116113, 115eqtr3d 2657 . . 3 (𝜑 → (𝐿‘((𝐺‘(𝐿𝐴))↑2)) = (𝐿𝐴))
117 prmnn 15331 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
11822, 117syl 17 . . . . 5 (𝜑𝑃 ∈ ℕ)
119118nnnn0d 11311 . . . 4 (𝜑𝑃 ∈ ℕ0)
120 zsqcl 12890 . . . . 5 ((𝐺‘(𝐿𝐴)) ∈ ℤ → ((𝐺‘(𝐿𝐴))↑2) ∈ ℤ)
121104, 120syl 17 . . . 4 (𝜑 → ((𝐺‘(𝐿𝐴))↑2) ∈ ℤ)
1221, 11zndvds 19838 . . . 4 ((𝑃 ∈ ℕ0 ∧ ((𝐺‘(𝐿𝐴))↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐿‘((𝐺‘(𝐿𝐴))↑2)) = (𝐿𝐴) ↔ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)))
123119, 121, 99, 122syl3anc 1323 . . 3 (𝜑 → ((𝐿‘((𝐺‘(𝐿𝐴))↑2)) = (𝐿𝐴) ↔ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)))
124116, 123mpbid 222 . 2 (𝜑𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴))
125105oveq1d 6630 . . . 4 (𝑥 = (𝐺‘(𝐿𝐴)) → ((𝑥↑2) − 𝐴) = (((𝐺‘(𝐿𝐴))↑2) − 𝐴))
126125breq2d 4635 . . 3 (𝑥 = (𝐺‘(𝐿𝐴)) → (𝑃 ∥ ((𝑥↑2) − 𝐴) ↔ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)))
127126rspcev 3299 . 2 (((𝐺‘(𝐿𝐴)) ∈ ℤ ∧ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
128104, 124, 127syl2anc 692 1 (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∃wrex 2909  Vcvv 3190   ∖ cdif 3557  {csn 4155   class class class wbr 4623   ↦ cmpt 4683  ◡ccnv 5083   “ cima 5087  ⟶wf 5853  –1-1→wf1 5854  –1-1-onto→wf1o 5856  ‘cfv 5857  (class class class)co 6615   ≈ cen 7912   ≼ cdom 7913  Fincfn 7915  0cc0 9896  1c1 9897   < clt 10034   ≤ cle 10035   − cmin 10226   / cdiv 10644  ℕcn 10980  2c2 11030  ℕ0cn0 11252  ℤcz 11337  ...cfz 12284  ↑cexp 12816  #chash 13073   ∥ cdvds 14926  ℙcprime 15328  Basecbs 15800  0gc0g 16040  Mndcmnd 17234  Grpcgrp 17362  -gcsg 17364  .gcmg 17480  mulGrpcmgp 18429  1rcur 18441  Ringcrg 18487  CRingccrg 18488  Fieldcfield 18688  NzRingcnzr 19197  Domncdomn 19220  IDomncidom 19221  algSccascl 19251  var1cv1 19486  Poly1cpl1 19487  eval1ce1 19619  ℤRHomczrh 19788  ℤ/nℤczn 19791   deg1 cdg1 23752   /L clgs 24953 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-ofr 6863  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-tpos 7312  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-ec 7704  df-qs 7708  df-map 7819  df-pm 7820  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-xnn0 11324  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-fz 12285  df-fzo 12423  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-dvds 14927  df-gcd 15160  df-prm 15329  df-phi 15414  df-pc 15485  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-hom 15906  df-cco 15907  df-0g 16042  df-gsum 16043  df-prds 16048  df-pws 16050  df-imas 16108  df-qus 16109  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-mhm 17275  df-submnd 17276  df-grp 17365  df-minusg 17366  df-sbg 17367  df-mulg 17481  df-subg 17531  df-nsg 17532  df-eqg 17533  df-ghm 17598  df-cntz 17690  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-srg 18446  df-ring 18489  df-cring 18490  df-oppr 18563  df-dvdsr 18581  df-unit 18582  df-invr 18612  df-dvr 18623  df-rnghom 18655  df-drng 18689  df-field 18690  df-subrg 18718  df-lmod 18805  df-lss 18873  df-lsp 18912  df-sra 19112  df-rgmod 19113  df-lidl 19114  df-rsp 19115  df-2idl 19172  df-nzr 19198  df-rlreg 19223  df-domn 19224  df-idom 19225  df-assa 19252  df-asp 19253  df-ascl 19254  df-psr 19296  df-mvr 19297  df-mpl 19298  df-opsr 19300  df-evls 19446  df-evl 19447  df-psr1 19490  df-vr1 19491  df-ply1 19492  df-coe1 19493  df-evl1 19621  df-cnfld 19687  df-zring 19759  df-zrh 19792  df-zn 19795  df-mdeg 23753  df-deg1 23754  df-mon1 23828  df-uc1p 23829  df-q1p 23830  df-r1p 23831  df-lgs 24954 This theorem is referenced by:  lgsqrlem5  25009
 Copyright terms: Public domain W3C validator