![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lgsqrlem3 | Structured version Visualization version GIF version |
Description: Lemma for lgsqr 25297. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
lgsqr.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑃) |
lgsqr.s | ⊢ 𝑆 = (Poly1‘𝑌) |
lgsqr.b | ⊢ 𝐵 = (Base‘𝑆) |
lgsqr.d | ⊢ 𝐷 = ( deg1 ‘𝑌) |
lgsqr.o | ⊢ 𝑂 = (eval1‘𝑌) |
lgsqr.e | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
lgsqr.x | ⊢ 𝑋 = (var1‘𝑌) |
lgsqr.m | ⊢ − = (-g‘𝑆) |
lgsqr.u | ⊢ 1 = (1r‘𝑆) |
lgsqr.t | ⊢ 𝑇 = ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) |
lgsqr.l | ⊢ 𝐿 = (ℤRHom‘𝑌) |
lgsqr.1 | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
lgsqr.g | ⊢ 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2))) |
lgsqr.3 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
lgsqr.4 | ⊢ (𝜑 → (𝐴 /L 𝑃) = 1) |
Ref | Expression |
---|---|
lgsqrlem3 | ⊢ (𝜑 → (𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgsqr.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
2 | 1 | eldifad 3735 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
3 | lgsqr.y | . . . . . . . . . 10 ⊢ 𝑌 = (ℤ/nℤ‘𝑃) | |
4 | 3 | znfld 20124 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → 𝑌 ∈ Field) |
5 | 2, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ Field) |
6 | fldidom 19520 | . . . . . . . 8 ⊢ (𝑌 ∈ Field → 𝑌 ∈ IDomn) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ IDomn) |
8 | isidom 19519 | . . . . . . . 8 ⊢ (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn)) | |
9 | 8 | simplbi 485 | . . . . . . 7 ⊢ (𝑌 ∈ IDomn → 𝑌 ∈ CRing) |
10 | 7, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ CRing) |
11 | crngring 18766 | . . . . . 6 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ Ring) |
13 | lgsqr.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
14 | 13 | zrhrhm 20075 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) |
15 | 12, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom 𝑌)) |
16 | zringbas 20039 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
17 | eqid 2771 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
18 | 16, 17 | rhmf 18936 | . . . 4 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
19 | 15, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑌)) |
20 | lgsqr.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
21 | 19, 20 | ffvelrnd 6505 | . 2 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (Base‘𝑌)) |
22 | lgsqr.s | . . 3 ⊢ 𝑆 = (Poly1‘𝑌) | |
23 | lgsqr.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
24 | lgsqr.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝑌) | |
25 | lgsqr.o | . . 3 ⊢ 𝑂 = (eval1‘𝑌) | |
26 | lgsqr.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
27 | lgsqr.x | . . 3 ⊢ 𝑋 = (var1‘𝑌) | |
28 | lgsqr.m | . . 3 ⊢ − = (-g‘𝑆) | |
29 | lgsqr.u | . . 3 ⊢ 1 = (1r‘𝑆) | |
30 | lgsqr.t | . . 3 ⊢ 𝑇 = ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) | |
31 | lgsvalmod 25262 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) | |
32 | 20, 1, 31 | syl2anc 573 | . . . 4 ⊢ (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) |
33 | lgsqr.4 | . . . . 5 ⊢ (𝜑 → (𝐴 /L 𝑃) = 1) | |
34 | 33 | oveq1d 6811 | . . . 4 ⊢ (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = (1 mod 𝑃)) |
35 | 32, 34 | eqtr3d 2807 | . . 3 ⊢ (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃)) |
36 | 3, 22, 23, 24, 25, 26, 27, 28, 29, 30, 13, 1, 20, 35 | lgsqrlem1 25292 | . 2 ⊢ (𝜑 → ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)) |
37 | eqid 2771 | . . . . 5 ⊢ (𝑌 ↑s (Base‘𝑌)) = (𝑌 ↑s (Base‘𝑌)) | |
38 | eqid 2771 | . . . . 5 ⊢ (Base‘(𝑌 ↑s (Base‘𝑌))) = (Base‘(𝑌 ↑s (Base‘𝑌))) | |
39 | fvexd 6346 | . . . . 5 ⊢ (𝜑 → (Base‘𝑌) ∈ V) | |
40 | 25, 22, 37, 17 | evl1rhm 19911 | . . . . . . . 8 ⊢ (𝑌 ∈ CRing → 𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌)))) |
41 | 10, 40 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌)))) |
42 | 23, 38 | rhmf 18936 | . . . . . . 7 ⊢ (𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌))) → 𝑂:𝐵⟶(Base‘(𝑌 ↑s (Base‘𝑌)))) |
43 | 41, 42 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑂:𝐵⟶(Base‘(𝑌 ↑s (Base‘𝑌)))) |
44 | 22 | ply1ring 19833 | . . . . . . . . . 10 ⊢ (𝑌 ∈ Ring → 𝑆 ∈ Ring) |
45 | 12, 44 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ Ring) |
46 | ringgrp 18760 | . . . . . . . . 9 ⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) | |
47 | 45, 46 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ Grp) |
48 | eqid 2771 | . . . . . . . . . . 11 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
49 | 48 | ringmgp 18761 | . . . . . . . . . 10 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
50 | 45, 49 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
51 | oddprm 15722 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ) | |
52 | 1, 51 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ) |
53 | 52 | nnnn0d 11558 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0) |
54 | 27, 22, 23 | vr1cl 19802 | . . . . . . . . . 10 ⊢ (𝑌 ∈ Ring → 𝑋 ∈ 𝐵) |
55 | 12, 54 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
56 | 48, 23 | mgpbas 18703 | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘(mulGrp‘𝑆)) |
57 | 56, 26 | mulgnn0cl 17766 | . . . . . . . . 9 ⊢ (((mulGrp‘𝑆) ∈ Mnd ∧ ((𝑃 − 1) / 2) ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵) |
58 | 50, 53, 55, 57 | syl3anc 1476 | . . . . . . . 8 ⊢ (𝜑 → (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵) |
59 | 23, 29 | ringidcl 18776 | . . . . . . . . 9 ⊢ (𝑆 ∈ Ring → 1 ∈ 𝐵) |
60 | 45, 59 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ 𝐵) |
61 | 23, 28 | grpsubcl 17703 | . . . . . . . 8 ⊢ ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵 ∧ 1 ∈ 𝐵) → ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) ∈ 𝐵) |
62 | 47, 58, 60, 61 | syl3anc 1476 | . . . . . . 7 ⊢ (𝜑 → ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) ∈ 𝐵) |
63 | 30, 62 | syl5eqel 2854 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
64 | 43, 63 | ffvelrnd 6505 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑇) ∈ (Base‘(𝑌 ↑s (Base‘𝑌)))) |
65 | 37, 17, 38, 5, 39, 64 | pwselbas 16357 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑇):(Base‘𝑌)⟶(Base‘𝑌)) |
66 | 65 | ffnd 6185 | . . 3 ⊢ (𝜑 → (𝑂‘𝑇) Fn (Base‘𝑌)) |
67 | fniniseg 6483 | . . 3 ⊢ ((𝑂‘𝑇) Fn (Base‘𝑌) → ((𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ ((𝐿‘𝐴) ∈ (Base‘𝑌) ∧ ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)))) | |
68 | 66, 67 | syl 17 | . 2 ⊢ (𝜑 → ((𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ ((𝐿‘𝐴) ∈ (Base‘𝑌) ∧ ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)))) |
69 | 21, 36, 68 | mpbir2and 692 | 1 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ∖ cdif 3720 {csn 4317 ↦ cmpt 4864 ◡ccnv 5249 “ cima 5253 Fn wfn 6025 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 1c1 10143 − cmin 10472 / cdiv 10890 ℕcn 11226 2c2 11276 ℕ0cn0 11499 ℤcz 11584 ...cfz 12533 mod cmo 12876 ↑cexp 13067 ℙcprime 15592 Basecbs 16064 0gc0g 16308 ↑s cpws 16315 Mndcmnd 17502 Grpcgrp 17630 -gcsg 17632 .gcmg 17748 mulGrpcmgp 18697 1rcur 18709 Ringcrg 18755 CRingccrg 18756 RingHom crh 18922 Fieldcfield 18958 Domncdomn 19495 IDomncidom 19496 var1cv1 19761 Poly1cpl1 19762 eval1ce1 19894 ℤringzring 20033 ℤRHomczrh 20063 ℤ/nℤczn 20066 deg1 cdg1 24034 /L clgs 25240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-addf 10221 ax-mulf 10222 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-ofr 7049 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-tpos 7508 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7900 df-ec 7902 df-qs 7906 df-map 8015 df-pm 8016 df-ixp 8067 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-sup 8508 df-inf 8509 df-oi 8575 df-card 8969 df-cda 9196 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-xnn0 11571 df-z 11585 df-dec 11701 df-uz 11894 df-q 11997 df-rp 12036 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-dvds 15190 df-gcd 15425 df-prm 15593 df-phi 15678 df-pc 15749 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-0g 16310 df-gsum 16311 df-prds 16316 df-pws 16318 df-imas 16376 df-qus 16377 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-mulg 17749 df-subg 17799 df-nsg 17800 df-eqg 17801 df-ghm 17866 df-cntz 17957 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-srg 18714 df-ring 18757 df-cring 18758 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-dvr 18891 df-rnghom 18925 df-drng 18959 df-field 18960 df-subrg 18988 df-lmod 19075 df-lss 19143 df-lsp 19185 df-sra 19387 df-rgmod 19388 df-lidl 19389 df-rsp 19390 df-2idl 19447 df-nzr 19473 df-rlreg 19498 df-domn 19499 df-idom 19500 df-assa 19527 df-asp 19528 df-ascl 19529 df-psr 19571 df-mvr 19572 df-mpl 19573 df-opsr 19575 df-evls 19721 df-evl 19722 df-psr1 19765 df-vr1 19766 df-ply1 19767 df-evl1 19896 df-cnfld 19962 df-zring 20034 df-zrh 20067 df-zn 20070 df-lgs 25241 |
This theorem is referenced by: lgsqrlem4 25295 |
Copyright terms: Public domain | W3C validator |