Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem2 Structured version   Visualization version   GIF version

Theorem lgsqrlem2 25117
 Description: Lemma for lgsqr 25121. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = ( deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqr.g 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
Assertion
Ref Expression
lgsqrlem2 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}))
Distinct variable groups:   𝑦,𝑂   𝑦,𝑃   𝜑,𝑦   𝑦,𝑇   𝑦,𝐿   𝑦,𝑌
Allowed substitution hints:   𝐵(𝑦)   𝐷(𝑦)   𝑆(𝑦)   1 (𝑦)   (𝑦)   𝐺(𝑦)   (𝑦)   𝑋(𝑦)

Proof of Theorem lgsqrlem2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsqr.1 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ (ℙ ∖ {2}))
21eldifad 3619 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
3 lgsqr.y . . . . . . . . . . . . 13 𝑌 = (ℤ/nℤ‘𝑃)
43znfld 19957 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
52, 4syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ Field)
6 fldidom 19353 . . . . . . . . . . 11 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
75, 6syl 17 . . . . . . . . . 10 (𝜑𝑌 ∈ IDomn)
8 isidom 19352 . . . . . . . . . . 11 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
98simplbi 475 . . . . . . . . . 10 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
107, 9syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ CRing)
11 crngring 18604 . . . . . . . . 9 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
1210, 11syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Ring)
13 lgsqr.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑌)
1413zrhrhm 19908 . . . . . . . 8 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
1512, 14syl 17 . . . . . . 7 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
16 zringbas 19872 . . . . . . . 8 ℤ = (Base‘ℤring)
17 eqid 2651 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
1816, 17rhmf 18774 . . . . . . 7 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
1915, 18syl 17 . . . . . 6 (𝜑𝐿:ℤ⟶(Base‘𝑌))
2019adantr 480 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌))
21 elfzelz 12380 . . . . . . 7 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ∈ ℤ)
2221adantl 481 . . . . . 6 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℤ)
23 zsqcl 12974 . . . . . 6 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
2422, 23syl 17 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦↑2) ∈ ℤ)
2520, 24ffvelrnd 6400 . . . 4 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(𝑦↑2)) ∈ (Base‘𝑌))
26 lgsqr.s . . . . 5 𝑆 = (Poly1𝑌)
27 lgsqr.b . . . . 5 𝐵 = (Base‘𝑆)
28 lgsqr.d . . . . 5 𝐷 = ( deg1𝑌)
29 lgsqr.o . . . . 5 𝑂 = (eval1𝑌)
30 lgsqr.e . . . . 5 = (.g‘(mulGrp‘𝑆))
31 lgsqr.x . . . . 5 𝑋 = (var1𝑌)
32 lgsqr.m . . . . 5 = (-g𝑆)
33 lgsqr.u . . . . 5 1 = (1r𝑆)
34 lgsqr.t . . . . 5 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
351adantr 480 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ (ℙ ∖ {2}))
36 elfznn 12408 . . . . . . . . . . 11 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ∈ ℕ)
3736adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℕ)
3837nncnd 11074 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℂ)
39 oddprm 15562 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
401, 39syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
4140nnnn0d 11389 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
4241adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈ ℕ0)
43 2nn0 11347 . . . . . . . . . 10 2 ∈ ℕ0
4443a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℕ0)
4538, 42, 44expmuld 13051 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦↑(2 · ((𝑃 − 1) / 2))) = ((𝑦↑2)↑((𝑃 − 1) / 2)))
46 prmnn 15435 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
472, 46syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℕ)
4847nnred 11073 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℝ)
49 peano2rem 10386 . . . . . . . . . . . . . 14 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑃 − 1) ∈ ℝ)
5150recnd 10106 . . . . . . . . . . . 12 (𝜑 → (𝑃 − 1) ∈ ℂ)
52 2cnd 11131 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
53 2ne0 11151 . . . . . . . . . . . . 13 2 ≠ 0
5453a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
5551, 52, 54divcan2d 10841 . . . . . . . . . . 11 (𝜑 → (2 · ((𝑃 − 1) / 2)) = (𝑃 − 1))
56 phiprm 15529 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
572, 56syl 17 . . . . . . . . . . 11 (𝜑 → (ϕ‘𝑃) = (𝑃 − 1))
5855, 57eqtr4d 2688 . . . . . . . . . 10 (𝜑 → (2 · ((𝑃 − 1) / 2)) = (ϕ‘𝑃))
5958adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (2 · ((𝑃 − 1) / 2)) = (ϕ‘𝑃))
6059oveq2d 6706 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦↑(2 · ((𝑃 − 1) / 2))) = (𝑦↑(ϕ‘𝑃)))
6145, 60eqtr3d 2687 . . . . . . 7 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑦↑2)↑((𝑃 − 1) / 2)) = (𝑦↑(ϕ‘𝑃)))
6261oveq1d 6705 . . . . . 6 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (((𝑦↑2)↑((𝑃 − 1) / 2)) mod 𝑃) = ((𝑦↑(ϕ‘𝑃)) mod 𝑃))
632adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ)
6463, 46syl 17 . . . . . . 7 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
6547nnzd 11519 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
6665adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ)
67 gcdcom 15282 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑦 gcd 𝑃) = (𝑃 gcd 𝑦))
6822, 66, 67syl2anc 694 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦 gcd 𝑃) = (𝑃 gcd 𝑦))
6937nnred 11073 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℝ)
7050rehalfcld 11317 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 − 1) / 2) ∈ ℝ)
7170adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈ ℝ)
7248adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℝ)
73 elfzle2 12383 . . . . . . . . . . . . 13 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ≤ ((𝑃 − 1) / 2))
7473adantl 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ≤ ((𝑃 − 1) / 2))
75 prmuz2 15455 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
762, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ (ℤ‘2))
77 uz2m1nn 11801 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
7876, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃 − 1) ∈ ℕ)
7978nnrpd 11908 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 − 1) ∈ ℝ+)
80 rphalflt 11898 . . . . . . . . . . . . . . 15 ((𝑃 − 1) ∈ ℝ+ → ((𝑃 − 1) / 2) < (𝑃 − 1))
8179, 80syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝑃 − 1) / 2) < (𝑃 − 1))
8248ltm1d 10994 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) < 𝑃)
8370, 50, 48, 81, 82lttrd 10236 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 − 1) / 2) < 𝑃)
8483adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) < 𝑃)
8569, 71, 72, 74, 84lelttrd 10233 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 < 𝑃)
8669, 72ltnled 10222 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦 < 𝑃 ↔ ¬ 𝑃𝑦))
8785, 86mpbid 222 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃𝑦)
88 dvdsle 15079 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑃𝑦𝑃𝑦))
8966, 37, 88syl2anc 694 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑃𝑦𝑃𝑦))
9087, 89mtod 189 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃𝑦)
91 coprm 15470 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℤ) → (¬ 𝑃𝑦 ↔ (𝑃 gcd 𝑦) = 1))
9263, 22, 91syl2anc 694 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (¬ 𝑃𝑦 ↔ (𝑃 gcd 𝑦) = 1))
9390, 92mpbid 222 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 gcd 𝑦) = 1)
9468, 93eqtrd 2685 . . . . . . 7 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦 gcd 𝑃) = 1)
95 eulerth 15535 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ (𝑦 gcd 𝑃) = 1) → ((𝑦↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
9664, 22, 94, 95syl3anc 1366 . . . . . 6 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑦↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
9762, 96eqtrd 2685 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (((𝑦↑2)↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
983, 26, 27, 28, 29, 30, 31, 32, 33, 34, 13, 35, 24, 97lgsqrlem1 25116 . . . 4 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑂𝑇)‘(𝐿‘(𝑦↑2))) = (0g𝑌))
99 eqid 2651 . . . . . . . 8 (𝑌s (Base‘𝑌)) = (𝑌s (Base‘𝑌))
100 eqid 2651 . . . . . . . 8 (Base‘(𝑌s (Base‘𝑌))) = (Base‘(𝑌s (Base‘𝑌)))
101 fvexd 6241 . . . . . . . 8 (𝜑 → (Base‘𝑌) ∈ V)
10229, 26, 99, 17evl1rhm 19744 . . . . . . . . . . 11 (𝑌 ∈ CRing → 𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
10310, 102syl 17 . . . . . . . . . 10 (𝜑𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
10427, 100rhmf 18774 . . . . . . . . . 10 (𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))) → 𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
105103, 104syl 17 . . . . . . . . 9 (𝜑𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
10626ply1ring 19666 . . . . . . . . . . . . 13 (𝑌 ∈ Ring → 𝑆 ∈ Ring)
10712, 106syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Ring)
108 ringgrp 18598 . . . . . . . . . . . 12 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
109107, 108syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ Grp)
110 eqid 2651 . . . . . . . . . . . . . 14 (mulGrp‘𝑆) = (mulGrp‘𝑆)
111110ringmgp 18599 . . . . . . . . . . . . 13 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
112107, 111syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
11331, 26, 27vr1cl 19635 . . . . . . . . . . . . 13 (𝑌 ∈ Ring → 𝑋𝐵)
11412, 113syl 17 . . . . . . . . . . . 12 (𝜑𝑋𝐵)
115110, 27mgpbas 18541 . . . . . . . . . . . . 13 𝐵 = (Base‘(mulGrp‘𝑆))
116115, 30mulgnn0cl 17605 . . . . . . . . . . . 12 (((mulGrp‘𝑆) ∈ Mnd ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑋𝐵) → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
117112, 41, 114, 116syl3anc 1366 . . . . . . . . . . 11 (𝜑 → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
11827, 33ringidcl 18614 . . . . . . . . . . . 12 (𝑆 ∈ Ring → 1𝐵)
119107, 118syl 17 . . . . . . . . . . 11 (𝜑1𝐵)
12027, 32grpsubcl 17542 . . . . . . . . . . 11 ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵1𝐵) → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
121109, 117, 119, 120syl3anc 1366 . . . . . . . . . 10 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
12234, 121syl5eqel 2734 . . . . . . . . 9 (𝜑𝑇𝐵)
123105, 122ffvelrnd 6400 . . . . . . . 8 (𝜑 → (𝑂𝑇) ∈ (Base‘(𝑌s (Base‘𝑌))))
12499, 17, 100, 5, 101, 123pwselbas 16196 . . . . . . 7 (𝜑 → (𝑂𝑇):(Base‘𝑌)⟶(Base‘𝑌))
125 ffn 6083 . . . . . . 7 ((𝑂𝑇):(Base‘𝑌)⟶(Base‘𝑌) → (𝑂𝑇) Fn (Base‘𝑌))
126124, 125syl 17 . . . . . 6 (𝜑 → (𝑂𝑇) Fn (Base‘𝑌))
127126adantr 480 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑂𝑇) Fn (Base‘𝑌))
128 fniniseg 6378 . . . . 5 ((𝑂𝑇) Fn (Base‘𝑌) → ((𝐿‘(𝑦↑2)) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿‘(𝑦↑2)) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿‘(𝑦↑2))) = (0g𝑌))))
129127, 128syl 17 . . . 4 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(𝑦↑2)) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿‘(𝑦↑2)) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿‘(𝑦↑2))) = (0g𝑌))))
13025, 98, 129mpbir2and 977 . . 3 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(𝑦↑2)) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
131 lgsqr.g . . 3 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
132130, 131fmptd 6425 . 2 (𝜑𝐺:(1...((𝑃 − 1) / 2))⟶((𝑂𝑇) “ {(0g𝑌)}))
133 oveq1 6697 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦↑2) = (𝑥↑2))
134133fveq2d 6233 . . . . . . . 8 (𝑦 = 𝑥 → (𝐿‘(𝑦↑2)) = (𝐿‘(𝑥↑2)))
135 fvex 6239 . . . . . . . 8 (𝐿‘(𝑥↑2)) ∈ V
136134, 131, 135fvmpt 6321 . . . . . . 7 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → (𝐺𝑥) = (𝐿‘(𝑥↑2)))
137136ad2antrl 764 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝐺𝑥) = (𝐿‘(𝑥↑2)))
138 oveq1 6697 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦↑2) = (𝑧↑2))
139138fveq2d 6233 . . . . . . . 8 (𝑦 = 𝑧 → (𝐿‘(𝑦↑2)) = (𝐿‘(𝑧↑2)))
140 fvex 6239 . . . . . . . 8 (𝐿‘(𝑧↑2)) ∈ V
141139, 131, 140fvmpt 6321 . . . . . . 7 (𝑧 ∈ (1...((𝑃 − 1) / 2)) → (𝐺𝑧) = (𝐿‘(𝑧↑2)))
142141ad2antll 765 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝐺𝑧) = (𝐿‘(𝑧↑2)))
143137, 142eqeq12d 2666 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐺𝑥) = (𝐺𝑧) ↔ (𝐿‘(𝑥↑2)) = (𝐿‘(𝑧↑2))))
14447nnnn0d 11389 . . . . . . 7 (𝜑𝑃 ∈ ℕ0)
145144adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℕ0)
146 elfzelz 12380 . . . . . . . 8 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℤ)
147146ad2antrl 764 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℤ)
148 zsqcl 12974 . . . . . . 7 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
149147, 148syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥↑2) ∈ ℤ)
150 elfzelz 12380 . . . . . . . 8 (𝑧 ∈ (1...((𝑃 − 1) / 2)) → 𝑧 ∈ ℤ)
151150ad2antll 765 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℤ)
152 zsqcl 12974 . . . . . . 7 (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℤ)
153151, 152syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑧↑2) ∈ ℤ)
1543, 13zndvds 19946 . . . . . 6 ((𝑃 ∈ ℕ0 ∧ (𝑥↑2) ∈ ℤ ∧ (𝑧↑2) ∈ ℤ) → ((𝐿‘(𝑥↑2)) = (𝐿‘(𝑧↑2)) ↔ 𝑃 ∥ ((𝑥↑2) − (𝑧↑2))))
155145, 149, 153, 154syl3anc 1366 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐿‘(𝑥↑2)) = (𝐿‘(𝑧↑2)) ↔ 𝑃 ∥ ((𝑥↑2) − (𝑧↑2))))
156 elfznn 12408 . . . . . . . . 9 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
157156ad2antrl 764 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℕ)
158157nncnd 11074 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℂ)
159 elfznn 12408 . . . . . . . . 9 (𝑧 ∈ (1...((𝑃 − 1) / 2)) → 𝑧 ∈ ℕ)
160159ad2antll 765 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℕ)
161160nncnd 11074 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℂ)
162 subsq 13012 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥↑2) − (𝑧↑2)) = ((𝑥 + 𝑧) · (𝑥𝑧)))
163158, 161, 162syl2anc 694 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥↑2) − (𝑧↑2)) = ((𝑥 + 𝑧) · (𝑥𝑧)))
164163breq2d 4697 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((𝑥↑2) − (𝑧↑2)) ↔ 𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧))))
165143, 155, 1643bitrd 294 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐺𝑥) = (𝐺𝑧) ↔ 𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧))))
1662adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℙ)
167147, 151zaddcld 11524 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ∈ ℤ)
168147, 151zsubcld 11525 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥𝑧) ∈ ℤ)
169 euclemma 15472 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑥 + 𝑧) ∈ ℤ ∧ (𝑥𝑧) ∈ ℤ) → (𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧)) ↔ (𝑃 ∥ (𝑥 + 𝑧) ∨ 𝑃 ∥ (𝑥𝑧))))
170166, 167, 168, 169syl3anc 1366 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧)) ↔ (𝑃 ∥ (𝑥 + 𝑧) ∨ 𝑃 ∥ (𝑥𝑧))))
171166, 46syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℕ)
172171nnzd 11519 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℤ)
173157, 160nnaddcld 11105 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ∈ ℕ)
174 dvdsle 15079 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ (𝑥 + 𝑧) ∈ ℕ) → (𝑃 ∥ (𝑥 + 𝑧) → 𝑃 ≤ (𝑥 + 𝑧)))
175172, 173, 174syl2anc 694 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥 + 𝑧) → 𝑃 ≤ (𝑥 + 𝑧)))
176173nnred 11073 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ∈ ℝ)
177171nnred 11073 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℝ)
178177, 49syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) ∈ ℝ)
179157nnred 11073 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℝ)
180160nnred 11073 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℝ)
18170adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 − 1) / 2) ∈ ℝ)
182 elfzle2 12383 . . . . . . . . . . . . 13 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ≤ ((𝑃 − 1) / 2))
183182ad2antrl 764 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ≤ ((𝑃 − 1) / 2))
184 elfzle2 12383 . . . . . . . . . . . . 13 (𝑧 ∈ (1...((𝑃 − 1) / 2)) → 𝑧 ≤ ((𝑃 − 1) / 2))
185184ad2antll 765 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ≤ ((𝑃 − 1) / 2))
186179, 180, 181, 181, 183, 185le2addd 10684 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ≤ (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)))
18751adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) ∈ ℂ)
1881872halvesd 11316 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)) = (𝑃 − 1))
189186, 188breqtrd 4711 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ≤ (𝑃 − 1))
190177ltm1d 10994 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) < 𝑃)
191176, 178, 177, 189, 190lelttrd 10233 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) < 𝑃)
192176, 177ltnled 10222 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 + 𝑧) < 𝑃 ↔ ¬ 𝑃 ≤ (𝑥 + 𝑧)))
193191, 192mpbid 222 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ¬ 𝑃 ≤ (𝑥 + 𝑧))
194193pm2.21d 118 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ≤ (𝑥 + 𝑧) → 𝑥 = 𝑧))
195175, 194syld 47 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥 + 𝑧) → 𝑥 = 𝑧))
196 moddvds 15038 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑥 mod 𝑃) = (𝑧 mod 𝑃) ↔ 𝑃 ∥ (𝑥𝑧)))
197171, 147, 151, 196syl3anc 1366 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 mod 𝑃) = (𝑧 mod 𝑃) ↔ 𝑃 ∥ (𝑥𝑧)))
198171nnrpd 11908 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℝ+)
199157nnnn0d 11389 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℕ0)
200199nn0ge0d 11392 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 0 ≤ 𝑥)
20183adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 − 1) / 2) < 𝑃)
202179, 181, 177, 183, 201lelttrd 10233 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 < 𝑃)
203 modid 12735 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑃)) → (𝑥 mod 𝑃) = 𝑥)
204179, 198, 200, 202, 203syl22anc 1367 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 mod 𝑃) = 𝑥)
205160nnnn0d 11389 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℕ0)
206205nn0ge0d 11392 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 0 ≤ 𝑧)
207180, 181, 177, 185, 201lelttrd 10233 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 < 𝑃)
208 modid 12735 . . . . . . . . . 10 (((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝑧𝑧 < 𝑃)) → (𝑧 mod 𝑃) = 𝑧)
209180, 198, 206, 207, 208syl22anc 1367 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑧 mod 𝑃) = 𝑧)
210204, 209eqeq12d 2666 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 mod 𝑃) = (𝑧 mod 𝑃) ↔ 𝑥 = 𝑧))
211197, 210bitr3d 270 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥𝑧) ↔ 𝑥 = 𝑧))
212211biimpd 219 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥𝑧) → 𝑥 = 𝑧))
213195, 212jaod 394 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 ∥ (𝑥 + 𝑧) ∨ 𝑃 ∥ (𝑥𝑧)) → 𝑥 = 𝑧))
214170, 213sylbid 230 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧)) → 𝑥 = 𝑧))
215165, 214sylbid 230 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐺𝑥) = (𝐺𝑧) → 𝑥 = 𝑧))
216215ralrimivva 3000 . 2 (𝜑 → ∀𝑥 ∈ (1...((𝑃 − 1) / 2))∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝐺𝑥) = (𝐺𝑧) → 𝑥 = 𝑧))
217 dff13 6552 . 2 (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) ↔ (𝐺:(1...((𝑃 − 1) / 2))⟶((𝑂𝑇) “ {(0g𝑌)}) ∧ ∀𝑥 ∈ (1...((𝑃 − 1) / 2))∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝐺𝑥) = (𝐺𝑧) → 𝑥 = 𝑧)))
218132, 216, 217sylanbrc 699 1 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  Vcvv 3231   ∖ cdif 3604  {csn 4210   class class class wbr 4685   ↦ cmpt 4762  ◡ccnv 5142   “ cima 5146   Fn wfn 5921  ⟶wf 5922  –1-1→wf1 5923  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112   ≤ cle 10113   − cmin 10304   / cdiv 10722  ℕcn 11058  2c2 11108  ℕ0cn0 11330  ℤcz 11415  ℤ≥cuz 11725  ℝ+crp 11870  ...cfz 12364   mod cmo 12708  ↑cexp 12900   ∥ cdvds 15027   gcd cgcd 15263  ℙcprime 15432  ϕcphi 15516  Basecbs 15904  0gc0g 16147   ↑s cpws 16154  Mndcmnd 17341  Grpcgrp 17469  -gcsg 17471  .gcmg 17587  mulGrpcmgp 18535  1rcur 18547  Ringcrg 18593  CRingccrg 18594   RingHom crh 18760  Fieldcfield 18796  Domncdomn 19328  IDomncidom 19329  var1cv1 19594  Poly1cpl1 19595  eval1ce1 19727  ℤringzring 19866  ℤRHomczrh 19896  ℤ/nℤczn 19899   deg1 cdg1 23859 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-ec 7789  df-qs 7793  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-prm 15433  df-phi 15518  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-imas 16215  df-qus 16216  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-nsg 17639  df-eqg 17640  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-srg 18552  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-rnghom 18763  df-drng 18797  df-field 18798  df-subrg 18826  df-lmod 18913  df-lss 18981  df-lsp 19020  df-sra 19220  df-rgmod 19221  df-lidl 19222  df-rsp 19223  df-2idl 19280  df-nzr 19306  df-rlreg 19331  df-domn 19332  df-idom 19333  df-assa 19360  df-asp 19361  df-ascl 19362  df-psr 19404  df-mvr 19405  df-mpl 19406  df-opsr 19408  df-evls 19554  df-evl 19555  df-psr1 19598  df-vr1 19599  df-ply1 19600  df-evl1 19729  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-zn 19903 This theorem is referenced by:  lgsqrlem4  25119
 Copyright terms: Public domain W3C validator