MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsne0 Structured version   Visualization version   GIF version

Theorem lgsne0 25105
Description: The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
Assertion
Ref Expression
lgsne0 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))

Proof of Theorem lgsne0
Dummy variables 𝑘 𝑛 𝑥 𝑦 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iffalse 4128 . . . . . 6 (¬ (𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) = 0)
21necon1ai 2850 . . . . 5 (if((𝐴↑2) = 1, 1, 0) ≠ 0 → (𝐴↑2) = 1)
3 iftrue 4125 . . . . . 6 ((𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) = 1)
4 ax-1ne0 10043 . . . . . . 7 1 ≠ 0
54a1i 11 . . . . . 6 ((𝐴↑2) = 1 → 1 ≠ 0)
63, 5eqnetrd 2890 . . . . 5 ((𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) ≠ 0)
72, 6impbii 199 . . . 4 (if((𝐴↑2) = 1, 1, 0) ≠ 0 ↔ (𝐴↑2) = 1)
8 zre 11419 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
98ad2antrr 762 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝐴 ∈ ℝ)
10 absresq 14086 . . . . . . 7 (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2))
119, 10syl 17 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((abs‘𝐴)↑2) = (𝐴↑2))
12 sq1 12998 . . . . . . 7 (1↑2) = 1
1312a1i 11 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (1↑2) = 1)
1411, 13eqeq12d 2666 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (((abs‘𝐴)↑2) = (1↑2) ↔ (𝐴↑2) = 1))
159recnd 10106 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝐴 ∈ ℂ)
1615abscld 14219 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (abs‘𝐴) ∈ ℝ)
1715absge0d 14227 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 0 ≤ (abs‘𝐴))
18 1re 10077 . . . . . . 7 1 ∈ ℝ
19 0le1 10589 . . . . . . 7 0 ≤ 1
20 sq11 12976 . . . . . . 7 ((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((abs‘𝐴)↑2) = (1↑2) ↔ (abs‘𝐴) = 1))
2118, 19, 20mpanr12 721 . . . . . 6 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (((abs‘𝐴)↑2) = (1↑2) ↔ (abs‘𝐴) = 1))
2216, 17, 21syl2anc 694 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (((abs‘𝐴)↑2) = (1↑2) ↔ (abs‘𝐴) = 1))
2314, 22bitr3d 270 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝐴↑2) = 1 ↔ (abs‘𝐴) = 1))
247, 23syl5bb 272 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (if((𝐴↑2) = 1, 1, 0) ≠ 0 ↔ (abs‘𝐴) = 1))
25 oveq2 6698 . . . . 5 (𝑁 = 0 → (𝐴 /L 𝑁) = (𝐴 /L 0))
26 lgs0 25080 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
2726adantr 480 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
2825, 27sylan9eqr 2707 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L 𝑁) = if((𝐴↑2) = 1, 1, 0))
2928neeq1d 2882 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝐴 /L 𝑁) ≠ 0 ↔ if((𝐴↑2) = 1, 1, 0) ≠ 0))
30 oveq2 6698 . . . . 5 (𝑁 = 0 → (𝐴 gcd 𝑁) = (𝐴 gcd 0))
31 gcdid0 15288 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 gcd 0) = (abs‘𝐴))
3231adantr 480 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 gcd 0) = (abs‘𝐴))
3330, 32sylan9eqr 2707 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 gcd 𝑁) = (abs‘𝐴))
3433eqeq1d 2653 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝐴 gcd 𝑁) = 1 ↔ (abs‘𝐴) = 1))
3524, 29, 343bitr4d 300 . 2 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))
36 eqid 2651 . . . . . 6 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
3736lgsval4 25087 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
3837neeq1d 2882 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) ≠ 0 ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) ≠ 0))
39 neeq1 2885 . . . . . . 7 (-1 = if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) → (-1 ≠ 0 ↔ if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0))
40 neeq1 2885 . . . . . . 7 (1 = if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) → (1 ≠ 0 ↔ if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0))
41 neg1ne0 11164 . . . . . . 7 -1 ≠ 0
4239, 40, 41, 4keephyp 4185 . . . . . 6 if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0
4342biantrur 526 . . . . 5 ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0 ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0))
44 neg1cn 11162 . . . . . . . 8 -1 ∈ ℂ
45 ax-1cn 10032 . . . . . . . 8 1 ∈ ℂ
4644, 45keepel 4188 . . . . . . 7 if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ
4746a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ)
48 nnabscl 14109 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
49483adant1 1099 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
50 nnuz 11761 . . . . . . . 8 ℕ = (ℤ‘1)
5149, 50syl6eleq 2740 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ (ℤ‘1))
5236lgsfcl3 25088 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
53 elfznn 12408 . . . . . . . . 9 (𝑘 ∈ (1...(abs‘𝑁)) → 𝑘 ∈ ℕ)
54 ffvelrn 6397 . . . . . . . . 9 (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
5552, 53, 54syl2an 493 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
5655zcnd 11521 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ)
57 mulcl 10058 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
5857adantl 481 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
5951, 56, 58seqcl 12861 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ)
6047, 59mulne0bd 10716 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0) ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) ≠ 0))
6143, 60syl5rbb 273 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) ≠ 0 ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0))
62 simpr 476 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
6362necon3ai 2848 . . . . . . . . 9 (𝑁 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝑁 = 0))
64 gcdn0cl 15271 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝑁 = 0)) → (𝐴 gcd 𝑁) ∈ ℕ)
6563, 64sylan2 490 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝐴 gcd 𝑁) ∈ ℕ)
66653impa 1278 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 gcd 𝑁) ∈ ℕ)
67 eluz2b3 11800 . . . . . . . . 9 ((𝐴 gcd 𝑁) ∈ (ℤ‘2) ↔ ((𝐴 gcd 𝑁) ∈ ℕ ∧ (𝐴 gcd 𝑁) ≠ 1))
68 exprmfct 15463 . . . . . . . . 9 ((𝐴 gcd 𝑁) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝑁))
6967, 68sylbir 225 . . . . . . . 8 (((𝐴 gcd 𝑁) ∈ ℕ ∧ (𝐴 gcd 𝑁) ≠ 1) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝑁))
7057adantl 481 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
7156adantlr 751 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ)
72 mul02 10252 . . . . . . . . . . 11 (𝑘 ∈ ℂ → (0 · 𝑘) = 0)
7372adantl 481 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑘 ∈ ℂ) → (0 · 𝑘) = 0)
74 mul01 10253 . . . . . . . . . . 11 (𝑘 ∈ ℂ → (𝑘 · 0) = 0)
7574adantl 481 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑘 ∈ ℂ) → (𝑘 · 0) = 0)
76 simprr 811 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∥ (𝐴 gcd 𝑁))
77 prmz 15436 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
7877ad2antrl 764 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∈ ℤ)
79 simpl1 1084 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝐴 ∈ ℤ)
80 simpl2 1085 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑁 ∈ ℤ)
81 dvdsgcdb 15309 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝𝐴𝑝𝑁) ↔ 𝑝 ∥ (𝐴 gcd 𝑁)))
8278, 79, 80, 81syl3anc 1366 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝑝𝐴𝑝𝑁) ↔ 𝑝 ∥ (𝐴 gcd 𝑁)))
8376, 82mpbird 247 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝𝐴𝑝𝑁))
8483simprd 478 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝𝑁)
85 dvdsabsb 15048 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑝𝑁𝑝 ∥ (abs‘𝑁)))
8678, 80, 85syl2anc 694 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝𝑁𝑝 ∥ (abs‘𝑁)))
8784, 86mpbid 222 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∥ (abs‘𝑁))
8849adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (abs‘𝑁) ∈ ℕ)
89 dvdsle 15079 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ (abs‘𝑁) ∈ ℕ) → (𝑝 ∥ (abs‘𝑁) → 𝑝 ≤ (abs‘𝑁)))
9078, 88, 89syl2anc 694 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 ∥ (abs‘𝑁) → 𝑝 ≤ (abs‘𝑁)))
9187, 90mpd 15 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ≤ (abs‘𝑁))
92 prmnn 15435 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
9392ad2antrl 764 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∈ ℕ)
9493, 50syl6eleq 2740 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∈ (ℤ‘1))
9588nnzd 11519 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (abs‘𝑁) ∈ ℤ)
96 elfz5 12372 . . . . . . . . . . . 12 ((𝑝 ∈ (ℤ‘1) ∧ (abs‘𝑁) ∈ ℤ) → (𝑝 ∈ (1...(abs‘𝑁)) ↔ 𝑝 ≤ (abs‘𝑁)))
9794, 95, 96syl2anc 694 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 ∈ (1...(abs‘𝑁)) ↔ 𝑝 ≤ (abs‘𝑁)))
9891, 97mpbird 247 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∈ (1...(abs‘𝑁)))
99 eleq1 2718 . . . . . . . . . . . . . 14 (𝑛 = 𝑝 → (𝑛 ∈ ℙ ↔ 𝑝 ∈ ℙ))
100 oveq2 6698 . . . . . . . . . . . . . . 15 (𝑛 = 𝑝 → (𝐴 /L 𝑛) = (𝐴 /L 𝑝))
101 oveq1 6697 . . . . . . . . . . . . . . 15 (𝑛 = 𝑝 → (𝑛 pCnt 𝑁) = (𝑝 pCnt 𝑁))
102100, 101oveq12d 6708 . . . . . . . . . . . . . 14 (𝑛 = 𝑝 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)))
10399, 102ifbieq1d 4142 . . . . . . . . . . . . 13 (𝑛 = 𝑝 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑝 ∈ ℙ, ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)), 1))
104 ovex 6718 . . . . . . . . . . . . . 14 ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)) ∈ V
105 1ex 10073 . . . . . . . . . . . . . 14 1 ∈ V
106104, 105ifex 4189 . . . . . . . . . . . . 13 if(𝑝 ∈ ℙ, ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)), 1) ∈ V
107103, 36, 106fvmpt 6321 . . . . . . . . . . . 12 (𝑝 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑝) = if(𝑝 ∈ ℙ, ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)), 1))
10893, 107syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑝) = if(𝑝 ∈ ℙ, ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)), 1))
109 iftrue 4125 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)), 1) = ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)))
110109ad2antrl 764 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → if(𝑝 ∈ ℙ, ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)), 1) = ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)))
111 oveq2 6698 . . . . . . . . . . . . . . . 16 (𝑝 = 2 → (𝐴 /L 𝑝) = (𝐴 /L 2))
112 lgs2 25084 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
11379, 112syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
114111, 113sylan9eqr 2707 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → (𝐴 /L 𝑝) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
115 simpr 476 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → 𝑝 = 2)
11683simpld 474 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝𝐴)
117116adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → 𝑝𝐴)
118115, 117eqbrtrrd 4709 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → 2 ∥ 𝐴)
119118iftrued 4127 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = 0)
120114, 119eqtrd 2685 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → (𝐴 /L 𝑝) = 0)
121 simpll1 1120 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝐴 ∈ ℤ)
122 simprl 809 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∈ ℙ)
123122adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∈ ℙ)
124 simpr 476 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ≠ 2)
125 eldifsn 4350 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (ℙ ∖ {2}) ↔ (𝑝 ∈ ℙ ∧ 𝑝 ≠ 2))
126123, 124, 125sylanbrc 699 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∈ (ℙ ∖ {2}))
127 lgsval3 25085 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑝) = ((((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) − 1))
128121, 126, 127syl2anc 694 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴 /L 𝑝) = ((((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) − 1))
129 oddprm 15562 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 ∈ (ℙ ∖ {2}) → ((𝑝 − 1) / 2) ∈ ℕ)
130126, 129syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((𝑝 − 1) / 2) ∈ ℕ)
131130nnnn0d 11389 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((𝑝 − 1) / 2) ∈ ℕ0)
132 zexpcl 12915 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ ((𝑝 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑝 − 1) / 2)) ∈ ℤ)
133121, 131, 132syl2anc 694 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴↑((𝑝 − 1) / 2)) ∈ ℤ)
134133zred 11520 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴↑((𝑝 − 1) / 2)) ∈ ℝ)
135 0red 10079 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 0 ∈ ℝ)
13618a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 1 ∈ ℝ)
137123, 92syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∈ ℕ)
138137nnrpd 11908 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∈ ℝ+)
139 0zd 11427 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 0 ∈ ℤ)
140116adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝𝐴)
141 dvdsval3 15031 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑝 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝑝𝐴 ↔ (𝐴 mod 𝑝) = 0))
142137, 121, 141syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝑝𝐴 ↔ (𝐴 mod 𝑝) = 0))
143140, 142mpbid 222 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴 mod 𝑝) = 0)
144 0mod 12741 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 ∈ ℝ+ → (0 mod 𝑝) = 0)
145138, 144syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (0 mod 𝑝) = 0)
146143, 145eqtr4d 2688 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴 mod 𝑝) = (0 mod 𝑝))
147 modexp 13039 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (((𝑝 − 1) / 2) ∈ ℕ0𝑝 ∈ ℝ+) ∧ (𝐴 mod 𝑝) = (0 mod 𝑝)) → ((𝐴↑((𝑝 − 1) / 2)) mod 𝑝) = ((0↑((𝑝 − 1) / 2)) mod 𝑝))
148121, 139, 131, 138, 146, 147syl221anc 1377 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((𝐴↑((𝑝 − 1) / 2)) mod 𝑝) = ((0↑((𝑝 − 1) / 2)) mod 𝑝))
1491300expd 13064 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (0↑((𝑝 − 1) / 2)) = 0)
150149oveq1d 6705 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((0↑((𝑝 − 1) / 2)) mod 𝑝) = (0 mod 𝑝))
151148, 150eqtrd 2685 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((𝐴↑((𝑝 − 1) / 2)) mod 𝑝) = (0 mod 𝑝))
152 modadd1 12747 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴↑((𝑝 − 1) / 2)) ∈ ℝ ∧ 0 ∈ ℝ) ∧ (1 ∈ ℝ ∧ 𝑝 ∈ ℝ+) ∧ ((𝐴↑((𝑝 − 1) / 2)) mod 𝑝) = (0 mod 𝑝)) → (((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) = ((0 + 1) mod 𝑝))
153134, 135, 136, 138, 151, 152syl221anc 1377 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) = ((0 + 1) mod 𝑝))
154 0p1e1 11170 . . . . . . . . . . . . . . . . . . . 20 (0 + 1) = 1
155154oveq1i 6700 . . . . . . . . . . . . . . . . . . 19 ((0 + 1) mod 𝑝) = (1 mod 𝑝)
156153, 155syl6eq 2701 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) = (1 mod 𝑝))
157137nnred 11073 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∈ ℝ)
158 prmuz2 15455 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
159123, 158syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∈ (ℤ‘2))
160 eluz2b2 11799 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
161159, 160sylib 208 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝑝 ∈ ℕ ∧ 1 < 𝑝))
162161simprd 478 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 1 < 𝑝)
163 1mod 12742 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℝ ∧ 1 < 𝑝) → (1 mod 𝑝) = 1)
164157, 162, 163syl2anc 694 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (1 mod 𝑝) = 1)
165156, 164eqtrd 2685 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) = 1)
166165oveq1d 6705 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) − 1) = (1 − 1))
167 1m1e0 11127 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
168166, 167syl6eq 2701 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) − 1) = 0)
169128, 168eqtrd 2685 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴 /L 𝑝) = 0)
170120, 169pm2.61dane 2910 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝐴 /L 𝑝) = 0)
171170oveq1d 6705 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)) = (0↑(𝑝 pCnt 𝑁)))
172 zq 11832 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
17380, 172syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑁 ∈ ℚ)
174 pcabs 15626 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑝 pCnt (abs‘𝑁)) = (𝑝 pCnt 𝑁))
175122, 173, 174syl2anc 694 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 pCnt (abs‘𝑁)) = (𝑝 pCnt 𝑁))
176 pcelnn 15621 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ (abs‘𝑁) ∈ ℕ) → ((𝑝 pCnt (abs‘𝑁)) ∈ ℕ ↔ 𝑝 ∥ (abs‘𝑁)))
177122, 88, 176syl2anc 694 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝑝 pCnt (abs‘𝑁)) ∈ ℕ ↔ 𝑝 ∥ (abs‘𝑁)))
17887, 177mpbird 247 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 pCnt (abs‘𝑁)) ∈ ℕ)
179175, 178eqeltrrd 2731 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 pCnt 𝑁) ∈ ℕ)
1801790expd 13064 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (0↑(𝑝 pCnt 𝑁)) = 0)
181171, 180eqtrd 2685 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)) = 0)
182108, 110, 1813eqtrd 2689 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑝) = 0)
18370, 71, 73, 75, 98, 88, 182seqz 12889 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = 0)
184183rexlimdvaa 3061 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝑁) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = 0))
18569, 184syl5 34 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (((𝐴 gcd 𝑁) ∈ ℕ ∧ (𝐴 gcd 𝑁) ≠ 1) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = 0))
18666, 185mpand 711 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 gcd 𝑁) ≠ 1 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = 0))
187186necon1d 2845 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0 → (𝐴 gcd 𝑁) = 1))
18851adantr 480 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) → (abs‘𝑁) ∈ (ℤ‘1))
18953adantl 481 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → 𝑘 ∈ ℕ)
190 eleq1 2718 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
191 oveq2 6698 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝐴 /L 𝑛) = (𝐴 /L 𝑘))
192 oveq1 6697 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑛 pCnt 𝑁) = (𝑘 pCnt 𝑁))
193191, 192oveq12d 6708 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)))
194190, 193ifbieq1d 4142 . . . . . . . . . . 11 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
195 ovex 6718 . . . . . . . . . . . 12 ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V
196195, 105ifex 4189 . . . . . . . . . . 11 if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V
197194, 36, 196fvmpt 6321 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
198189, 197syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
199 simpll1 1120 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ)
200 prmz 15436 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℙ → 𝑘 ∈ ℤ)
201200adantl 481 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℤ)
202 lgscl 25081 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐴 /L 𝑘) ∈ ℤ)
203199, 201, 202syl2anc 694 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ)
204203zcnd 11521 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℂ)
205204adantr 480 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → (𝐴 /L 𝑘) ∈ ℂ)
206 oveq2 6698 . . . . . . . . . . . . . . . . 17 (𝑘 = 2 → (𝐴 /L 𝑘) = (𝐴 /L 2))
207199adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → 𝐴 ∈ ℤ)
208207, 112syl 17 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
209206, 208sylan9eqr 2707 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 = 2) → (𝐴 /L 𝑘) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
210 nprmdvds1 15465 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ ℙ → ¬ 𝑘 ∥ 1)
211210adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ¬ 𝑘 ∥ 1)
212 simpll2 1121 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑁 ∈ ℤ)
213 dvdsgcdb 15309 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑘𝐴𝑘𝑁) ↔ 𝑘 ∥ (𝐴 gcd 𝑁)))
214201, 199, 212, 213syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝑘𝐴𝑘𝑁) ↔ 𝑘 ∥ (𝐴 gcd 𝑁)))
215 simplr 807 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝐴 gcd 𝑁) = 1)
216215breq2d 4697 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘 ∥ (𝐴 gcd 𝑁) ↔ 𝑘 ∥ 1))
217214, 216bitrd 268 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝑘𝐴𝑘𝑁) ↔ 𝑘 ∥ 1))
218211, 217mtbird 314 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ¬ (𝑘𝐴𝑘𝑁))
219 imnan 437 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘𝐴 → ¬ 𝑘𝑁) ↔ ¬ (𝑘𝐴𝑘𝑁))
220218, 219sylibr 224 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘𝐴 → ¬ 𝑘𝑁))
221220con2d 129 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘𝑁 → ¬ 𝑘𝐴))
222221imp 444 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → ¬ 𝑘𝐴)
223 breq1 4688 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 2 → (𝑘𝐴 ↔ 2 ∥ 𝐴))
224223notbid 307 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 2 → (¬ 𝑘𝐴 ↔ ¬ 2 ∥ 𝐴))
225222, 224syl5ibcom 235 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → (𝑘 = 2 → ¬ 2 ∥ 𝐴))
226225imp 444 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 = 2) → ¬ 2 ∥ 𝐴)
227226iffalsed 4130 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
228209, 227eqtrd 2685 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 = 2) → (𝐴 /L 𝑘) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
229 neeq1 2885 . . . . . . . . . . . . . . . . 17 (1 = if((𝐴 mod 8) ∈ {1, 7}, 1, -1) → (1 ≠ 0 ↔ if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ≠ 0))
230 neeq1 2885 . . . . . . . . . . . . . . . . 17 (-1 = if((𝐴 mod 8) ∈ {1, 7}, 1, -1) → (-1 ≠ 0 ↔ if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ≠ 0))
231229, 230, 4, 41keephyp 4185 . . . . . . . . . . . . . . . 16 if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ≠ 0
232231a1i 11 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 = 2) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ≠ 0)
233228, 232eqnetrd 2890 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 = 2) → (𝐴 /L 𝑘) ≠ 0)
234 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ)
235234ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∈ ℙ)
236235, 210syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ¬ 𝑘 ∥ 1)
237 simplr 807 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑘𝑁)
238235, 200syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∈ ℤ)
239207adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝐴 ∈ ℤ)
240 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ≠ 2)
241 eldifsn 4350 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (ℙ ∖ {2}) ↔ (𝑘 ∈ ℙ ∧ 𝑘 ≠ 2))
242235, 240, 241sylanbrc 699 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∈ (ℙ ∖ {2}))
243 oddprm 15562 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (ℙ ∖ {2}) → ((𝑘 − 1) / 2) ∈ ℕ)
244242, 243syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((𝑘 − 1) / 2) ∈ ℕ)
245244nnnn0d 11389 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((𝑘 − 1) / 2) ∈ ℕ0)
246 zexpcl 12915 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ ((𝑘 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑘 − 1) / 2)) ∈ ℤ)
247239, 245, 246syl2anc 694 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (𝐴↑((𝑘 − 1) / 2)) ∈ ℤ)
248212ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑁 ∈ ℤ)
249 dvdsgcd 15308 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ (𝐴↑((𝑘 − 1) / 2)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) ∧ 𝑘𝑁) → 𝑘 ∥ ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁)))
250238, 247, 248, 249syl3anc 1366 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) ∧ 𝑘𝑁) → 𝑘 ∥ ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁)))
251237, 250mpan2d 710 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) → 𝑘 ∥ ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁)))
252239zcnd 11521 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝐴 ∈ ℂ)
253252, 245absexpd 14235 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (abs‘(𝐴↑((𝑘 − 1) / 2))) = ((abs‘𝐴)↑((𝑘 − 1) / 2)))
254253oveq1d 6705 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((abs‘(𝐴↑((𝑘 − 1) / 2))) gcd (abs‘𝑁)) = (((abs‘𝐴)↑((𝑘 − 1) / 2)) gcd (abs‘𝑁)))
255 gcdabs 15297 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴↑((𝑘 − 1) / 2)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴↑((𝑘 − 1) / 2))) gcd (abs‘𝑁)) = ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁))
256247, 248, 255syl2anc 694 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((abs‘(𝐴↑((𝑘 − 1) / 2))) gcd (abs‘𝑁)) = ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁))
257 gcdabs 15297 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝐴) gcd (abs‘𝑁)) = (𝐴 gcd 𝑁))
258239, 248, 257syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((abs‘𝐴) gcd (abs‘𝑁)) = (𝐴 gcd 𝑁))
259215ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (𝐴 gcd 𝑁) = 1)
260258, 259eqtrd 2685 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((abs‘𝐴) gcd (abs‘𝑁)) = 1)
261222adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ¬ 𝑘𝐴)
262 dvds0 15044 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 ∈ ℤ → 𝑘 ∥ 0)
263238, 262syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∥ 0)
264 breq2 4689 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 = 0 → (𝑘𝐴𝑘 ∥ 0))
265263, 264syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (𝐴 = 0 → 𝑘𝐴))
266265necon3bd 2837 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (¬ 𝑘𝐴𝐴 ≠ 0))
267261, 266mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝐴 ≠ 0)
268 nnabscl 14109 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℕ)
269239, 267, 268syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (abs‘𝐴) ∈ ℕ)
270 simpll3 1122 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑁 ≠ 0)
271212, 270, 48syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (abs‘𝑁) ∈ ℕ)
272271ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (abs‘𝑁) ∈ ℕ)
273 rplpwr 15323 . . . . . . . . . . . . . . . . . . . . . . 23 (((abs‘𝐴) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ ∧ ((𝑘 − 1) / 2) ∈ ℕ) → (((abs‘𝐴) gcd (abs‘𝑁)) = 1 → (((abs‘𝐴)↑((𝑘 − 1) / 2)) gcd (abs‘𝑁)) = 1))
274269, 272, 244, 273syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (((abs‘𝐴) gcd (abs‘𝑁)) = 1 → (((abs‘𝐴)↑((𝑘 − 1) / 2)) gcd (abs‘𝑁)) = 1))
275260, 274mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (((abs‘𝐴)↑((𝑘 − 1) / 2)) gcd (abs‘𝑁)) = 1)
276254, 256, 2753eqtr3d 2693 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁) = 1)
277276breq2d 4697 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (𝑘 ∥ ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁) ↔ 𝑘 ∥ 1))
278251, 277sylibd 229 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) → 𝑘 ∥ 1))
279236, 278mtod 189 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ¬ 𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)))
280 prmnn 15435 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℙ → 𝑘 ∈ ℕ)
281280adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℕ)
282281ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∈ ℕ)
283 dvdsval3 15031 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ (𝐴↑((𝑘 − 1) / 2)) ∈ ℤ) → (𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) ↔ ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘) = 0))
284282, 247, 283syl2anc 694 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) ↔ ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘) = 0))
285284necon3bbid 2860 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (¬ 𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) ↔ ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘) ≠ 0))
286279, 285mpbid 222 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘) ≠ 0)
287 lgsvalmod 25086 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑘) mod 𝑘) = ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘))
288239, 242, 287syl2anc 694 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((𝐴 /L 𝑘) mod 𝑘) = ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘))
289282nnrpd 11908 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∈ ℝ+)
290 0mod 12741 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℝ+ → (0 mod 𝑘) = 0)
291289, 290syl 17 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (0 mod 𝑘) = 0)
292286, 288, 2913netr4d 2900 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((𝐴 /L 𝑘) mod 𝑘) ≠ (0 mod 𝑘))
293 oveq1 6697 . . . . . . . . . . . . . . . 16 ((𝐴 /L 𝑘) = 0 → ((𝐴 /L 𝑘) mod 𝑘) = (0 mod 𝑘))
294293necon3i 2855 . . . . . . . . . . . . . . 15 (((𝐴 /L 𝑘) mod 𝑘) ≠ (0 mod 𝑘) → (𝐴 /L 𝑘) ≠ 0)
295292, 294syl 17 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (𝐴 /L 𝑘) ≠ 0)
296233, 295pm2.61dane 2910 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → (𝐴 /L 𝑘) ≠ 0)
297 pczcl 15600 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑘 pCnt 𝑁) ∈ ℕ0)
298234, 212, 270, 297syl12anc 1364 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑁) ∈ ℕ0)
299298nn0zd 11518 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑁) ∈ ℤ)
300299adantr 480 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → (𝑘 pCnt 𝑁) ∈ ℤ)
301 expclz 12925 . . . . . . . . . . . . . 14 (((𝐴 /L 𝑘) ∈ ℂ ∧ (𝐴 /L 𝑘) ≠ 0 ∧ (𝑘 pCnt 𝑁) ∈ ℤ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ ℂ)
302 expne0i 12932 . . . . . . . . . . . . . 14 (((𝐴 /L 𝑘) ∈ ℂ ∧ (𝐴 /L 𝑘) ≠ 0 ∧ (𝑘 pCnt 𝑁) ∈ ℤ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ≠ 0)
303 neeq1 2885 . . . . . . . . . . . . . . 15 (𝑥 = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) → (𝑥 ≠ 0 ↔ ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ≠ 0))
304303elrab 3396 . . . . . . . . . . . . . 14 (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0} ↔ (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ ℂ ∧ ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ≠ 0))
305301, 302, 304sylanbrc 699 . . . . . . . . . . . . 13 (((𝐴 /L 𝑘) ∈ ℂ ∧ (𝐴 /L 𝑘) ≠ 0 ∧ (𝑘 pCnt 𝑁) ∈ ℤ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0})
306205, 296, 300, 305syl3anc 1366 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0})
307 dvdsabsb 15048 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘𝑁𝑘 ∥ (abs‘𝑁)))
308201, 212, 307syl2anc 694 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘𝑁𝑘 ∥ (abs‘𝑁)))
309308notbid 307 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (¬ 𝑘𝑁 ↔ ¬ 𝑘 ∥ (abs‘𝑁)))
310 pceq0 15622 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℙ ∧ (abs‘𝑁) ∈ ℕ) → ((𝑘 pCnt (abs‘𝑁)) = 0 ↔ ¬ 𝑘 ∥ (abs‘𝑁)))
311234, 271, 310syl2anc 694 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝑘 pCnt (abs‘𝑁)) = 0 ↔ ¬ 𝑘 ∥ (abs‘𝑁)))
312212, 172syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑁 ∈ ℚ)
313 pcabs 15626 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑘 pCnt (abs‘𝑁)) = (𝑘 pCnt 𝑁))
314234, 312, 313syl2anc 694 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (abs‘𝑁)) = (𝑘 pCnt 𝑁))
315314eqeq1d 2653 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝑘 pCnt (abs‘𝑁)) = 0 ↔ (𝑘 pCnt 𝑁) = 0))
316309, 311, 3153bitr2rd 297 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝑘 pCnt 𝑁) = 0 ↔ ¬ 𝑘𝑁))
317316biimpar 501 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘𝑁) → (𝑘 pCnt 𝑁) = 0)
318317oveq2d 6706 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘𝑁) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) = ((𝐴 /L 𝑘)↑0))
319204adantr 480 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘𝑁) → (𝐴 /L 𝑘) ∈ ℂ)
320319exp0d 13042 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘𝑁) → ((𝐴 /L 𝑘)↑0) = 1)
321318, 320eqtrd 2685 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘𝑁) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) = 1)
322 neeq1 2885 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (𝑥 ≠ 0 ↔ 1 ≠ 0))
323322elrab 3396 . . . . . . . . . . . . . 14 (1 ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0} ↔ (1 ∈ ℂ ∧ 1 ≠ 0))
32445, 4, 323mpbir2an 975 . . . . . . . . . . . . 13 1 ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0}
325321, 324syl6eqel 2738 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘𝑁) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0})
326306, 325pm2.61dan 849 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0})
327324a1i 11 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ ¬ 𝑘 ∈ ℙ) → 1 ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0})
328326, 327ifclda 4153 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0})
329328adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0})
330198, 329eqeltrd 2730 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0})
331 neeq1 2885 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝑥 ≠ 0 ↔ 𝑘 ≠ 0))
332331elrab 3396 . . . . . . . . . . 11 (𝑘 ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0} ↔ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
333 neeq1 2885 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥 ≠ 0 ↔ 𝑦 ≠ 0))
334333elrab 3396 . . . . . . . . . . 11 (𝑦 ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0} ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
335 mulcl 10058 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑘 · 𝑦) ∈ ℂ)
336335ad2ant2r 798 . . . . . . . . . . . 12 (((𝑘 ∈ ℂ ∧ 𝑘 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑘 · 𝑦) ∈ ℂ)
337 mulne0 10707 . . . . . . . . . . . 12 (((𝑘 ∈ ℂ ∧ 𝑘 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑘 · 𝑦) ≠ 0)
338336, 337jca 553 . . . . . . . . . . 11 (((𝑘 ∈ ℂ ∧ 𝑘 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → ((𝑘 · 𝑦) ∈ ℂ ∧ (𝑘 · 𝑦) ≠ 0))
339332, 334, 338syl2anb 495 . . . . . . . . . 10 ((𝑘 ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0} ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0}) → ((𝑘 · 𝑦) ∈ ℂ ∧ (𝑘 · 𝑦) ≠ 0))
340 neeq1 2885 . . . . . . . . . . 11 (𝑥 = (𝑘 · 𝑦) → (𝑥 ≠ 0 ↔ (𝑘 · 𝑦) ≠ 0))
341340elrab 3396 . . . . . . . . . 10 ((𝑘 · 𝑦) ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0} ↔ ((𝑘 · 𝑦) ∈ ℂ ∧ (𝑘 · 𝑦) ≠ 0))
342339, 341sylibr 224 . . . . . . . . 9 ((𝑘 ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0} ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0}) → (𝑘 · 𝑦) ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0})
343342adantl 481 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ (𝑘 ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0} ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0})) → (𝑘 · 𝑦) ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0})
344188, 330, 343seqcl 12861 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0})
345 neeq1 2885 . . . . . . . . 9 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) → (𝑥 ≠ 0 ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0))
346345elrab 3396 . . . . . . . 8 ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0} ↔ ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0))
347346simprbi 479 . . . . . . 7 ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 ≠ 0} → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0)
348344, 347syl 17 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0)
349348ex 449 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 gcd 𝑁) = 1 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0))
350187, 349impbid 202 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))
35138, 61, 3503bitrd 294 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))
3523513expa 1284 . 2 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))
35335, 352pm2.61dane 2910 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942  {crab 2945  cdif 3604  ifcif 4119  {csn 4210  {cpr 4212   class class class wbr 4685  cmpt 4762  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  cn 11058  2c2 11108  7c7 11113  8c8 11114  0cn0 11330  cz 11415  cuz 11725  cq 11826  +crp 11870  ...cfz 12364   mod cmo 12708  seqcseq 12841  cexp 12900  abscabs 14018  cdvds 15027   gcd cgcd 15263  cprime 15432   pCnt cpc 15588   /L clgs 25064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-prm 15433  df-phi 15518  df-pc 15589  df-lgs 25065
This theorem is referenced by:  lgsabs1  25106  lgsprme0  25109  lgsdirnn0  25114  lgsqr  25121  lgsdchr  25125  lgsquad3  25157  2lgsoddprm  25186
  Copyright terms: Public domain W3C validator