MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsmod Structured version   Visualization version   GIF version

Theorem lgsmod 25269
Description: The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsmod ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))

Proof of Theorem lgsmod
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 zmodcl 12898 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 mod 𝑁) ∈ ℕ0)
213adant3 1126 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐴 mod 𝑁) ∈ ℕ0)
32nn0zd 11682 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐴 mod 𝑁) ∈ ℤ)
43ad2antrr 705 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴 mod 𝑁) ∈ ℤ)
5 simpr 471 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
65adantr 466 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℙ)
7 simpl3 1231 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → ¬ 2 ∥ 𝑁)
8 breq1 4789 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 2 → (𝑛𝑁 ↔ 2 ∥ 𝑁))
98notbid 307 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 2 → (¬ 𝑛𝑁 ↔ ¬ 2 ∥ 𝑁))
107, 9syl5ibrcom 237 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → (𝑛 = 2 → ¬ 𝑛𝑁))
1110necon2ad 2958 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → (𝑛𝑁𝑛 ≠ 2))
1211imp 393 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ≠ 2)
13 eldifsn 4453 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℙ ∖ {2}) ↔ (𝑛 ∈ ℙ ∧ 𝑛 ≠ 2))
146, 12, 13sylanbrc 572 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ (ℙ ∖ {2}))
15 oddprm 15722 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℙ ∖ {2}) → ((𝑛 − 1) / 2) ∈ ℕ)
1614, 15syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝑛 − 1) / 2) ∈ ℕ)
1716nnnn0d 11553 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝑛 − 1) / 2) ∈ ℕ0)
18 zexpcl 13082 . . . . . . . . . . . . 13 (((𝐴 mod 𝑁) ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℕ0) → ((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℤ)
194, 17, 18syl2anc 573 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℤ)
2019zred 11684 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℝ)
21 simpll1 1254 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝐴 ∈ ℤ)
22 zexpcl 13082 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑛 − 1) / 2)) ∈ ℤ)
2321, 17, 22syl2anc 573 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴↑((𝑛 − 1) / 2)) ∈ ℤ)
2423zred 11684 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴↑((𝑛 − 1) / 2)) ∈ ℝ)
25 1red 10257 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 1 ∈ ℝ)
26 prmnn 15595 . . . . . . . . . . . . 13 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
2726ad2antlr 706 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℕ)
2827nnrpd 12073 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℝ+)
29 simpr 471 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛𝑁)
3021zred 11684 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝐴 ∈ ℝ)
31 simp2 1131 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ)
3231ad2antrr 705 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∈ ℕ)
3332nnrpd 12073 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∈ ℝ+)
34 modabs2 12912 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁))
3530, 33, 34syl2anc 573 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁))
36 moddvds 15200 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝐴 mod 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁) ↔ 𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴)))
3732, 4, 21, 36syl3anc 1476 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁) ↔ 𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴)))
3835, 37mpbid 222 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴))
39 prmz 15596 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℙ → 𝑛 ∈ ℤ)
4039ad2antlr 706 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℤ)
4132nnzd 11683 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∈ ℤ)
424, 21zsubcld 11689 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) − 𝐴) ∈ ℤ)
43 dvdstr 15227 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝐴 mod 𝑁) − 𝐴) ∈ ℤ) → ((𝑛𝑁𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴)) → 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴)))
4440, 41, 42, 43syl3anc 1476 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝑛𝑁𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴)) → 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴)))
4529, 38, 44mp2and 679 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴))
46 moddvds 15200 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (𝐴 mod 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛) ↔ 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴)))
4727, 4, 21, 46syl3anc 1476 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛) ↔ 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴)))
4845, 47mpbird 247 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛))
49 modexp 13206 . . . . . . . . . . . 12 ((((𝐴 mod 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (((𝑛 − 1) / 2) ∈ ℕ0𝑛 ∈ ℝ+) ∧ ((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛)) → (((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) mod 𝑛) = ((𝐴↑((𝑛 − 1) / 2)) mod 𝑛))
504, 21, 17, 28, 48, 49syl221anc 1487 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) mod 𝑛) = ((𝐴↑((𝑛 − 1) / 2)) mod 𝑛))
51 modadd1 12915 . . . . . . . . . . 11 (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℝ ∧ (𝐴↑((𝑛 − 1) / 2)) ∈ ℝ) ∧ (1 ∈ ℝ ∧ 𝑛 ∈ ℝ+) ∧ (((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) mod 𝑛) = ((𝐴↑((𝑛 − 1) / 2)) mod 𝑛)) → ((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛))
5220, 24, 25, 28, 50, 51syl221anc 1487 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛))
5352oveq1d 6808 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
54 lgsval3 25261 . . . . . . . . . 10 (((𝐴 mod 𝑁) ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((𝐴 mod 𝑁) /L 𝑛) = (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
554, 14, 54syl2anc 573 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) = (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
56 lgsval3 25261 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑛) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
5721, 14, 56syl2anc 573 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴 /L 𝑛) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
5853, 55, 573eqtr4d 2815 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) = (𝐴 /L 𝑛))
5958oveq1d 6808 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
603ad2antrr 705 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝐴 mod 𝑁) ∈ ℤ)
6139ad2antlr 706 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → 𝑛 ∈ ℤ)
62 lgscl 25257 . . . . . . . . . . . 12 (((𝐴 mod 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝐴 mod 𝑁) /L 𝑛) ∈ ℤ)
6360, 61, 62syl2anc 573 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) ∈ ℤ)
6463zcnd 11685 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) ∈ ℂ)
6564exp0d 13209 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑0) = 1)
66 simpll1 1254 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → 𝐴 ∈ ℤ)
67 lgscl 25257 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝐴 /L 𝑛) ∈ ℤ)
6866, 61, 67syl2anc 573 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝐴 /L 𝑛) ∈ ℤ)
6968zcnd 11685 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝐴 /L 𝑛) ∈ ℂ)
7069exp0d 13209 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 /L 𝑛)↑0) = 1)
7165, 70eqtr4d 2808 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑0) = ((𝐴 /L 𝑛)↑0))
7231adantr 466 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈ ℕ)
73 pceq0 15782 . . . . . . . . . . 11 ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑛 pCnt 𝑁) = 0 ↔ ¬ 𝑛𝑁))
745, 72, 73syl2anc 573 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑁) = 0 ↔ ¬ 𝑛𝑁))
7574biimpar 463 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝑛 pCnt 𝑁) = 0)
7675oveq2d 6809 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = (((𝐴 mod 𝑁) /L 𝑛)↑0))
7775oveq2d 6809 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑0))
7871, 76, 773eqtr4d 2815 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
7959, 78pm2.61dan 814 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
8079ifeq1da 4255 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
8180mpteq2dv 4879 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))
8281seqeq3d 13016 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))))
8382fveq1d 6334 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
84 eqid 2771 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
8584lgsval4a 25265 . . 3 (((𝐴 mod 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
863, 31, 85syl2anc 573 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
87 eqid 2771 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
8887lgsval4a 25265 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
89883adant3 1126 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐴 /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
9083, 86, 893eqtr4d 2815 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  cdif 3720  ifcif 4225  {csn 4316   class class class wbr 4786  cmpt 4863  cfv 6031  (class class class)co 6793  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  cmin 10468   / cdiv 10886  cn 11222  2c2 11272  0cn0 11494  cz 11579  +crp 12035   mod cmo 12876  seqcseq 13008  cexp 13067  cdvds 15189  cprime 15592   pCnt cpc 15748   /L clgs 25240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-xnn0 11566  df-z 11580  df-uz 11889  df-q 11992  df-rp 12036  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-dvds 15190  df-gcd 15425  df-prm 15593  df-phi 15678  df-pc 15749  df-lgs 25241
This theorem is referenced by:  lgsmodeq  25288  lgsqr  25297  lgsdchrval  25300
  Copyright terms: Public domain W3C validator