MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgseisenlem3 Structured version   Visualization version   GIF version

Theorem lgseisenlem3 25322
Description: Lemma for lgseisen 25324. (Contributed by Mario Carneiro, 17-Jun-2015.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgseisen.4 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
lgseisen.5 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
lgseisen.6 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
lgseisen.7 𝑌 = (ℤ/nℤ‘𝑃)
lgseisen.8 𝐺 = (mulGrp‘𝑌)
lgseisen.9 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
lgseisenlem3 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r𝑌))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐿   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑀   𝑥,𝑄,𝑦   𝑥,𝑌   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑦)   𝐺(𝑦)   𝐿(𝑦)   𝑀(𝑥)   𝑌(𝑦)

Proof of Theorem lgseisenlem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 oveq2 6822 . . . . . . . . 9 (𝑘 = 𝑥 → (2 · 𝑘) = (2 · 𝑥))
21fveq2d 6357 . . . . . . . 8 (𝑘 = 𝑥 → (𝐿‘(2 · 𝑘)) = (𝐿‘(2 · 𝑥)))
32cbvmptv 4902 . . . . . . 7 (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))
43oveq2i 6825 . . . . . 6 (𝐺 Σg (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘)))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))
5 lgseisen.8 . . . . . . . 8 𝐺 = (mulGrp‘𝑌)
6 eqid 2760 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
75, 6mgpbas 18715 . . . . . . 7 (Base‘𝑌) = (Base‘𝐺)
8 eqid 2760 . . . . . . 7 (0g𝐺) = (0g𝐺)
9 lgseisen.1 . . . . . . . . . . 11 (𝜑𝑃 ∈ (ℙ ∖ {2}))
109eldifad 3727 . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
11 lgseisen.7 . . . . . . . . . . 11 𝑌 = (ℤ/nℤ‘𝑃)
1211znfld 20131 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
1310, 12syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ Field)
14 isfld 18978 . . . . . . . . . 10 (𝑌 ∈ Field ↔ (𝑌 ∈ DivRing ∧ 𝑌 ∈ CRing))
1514simprbi 483 . . . . . . . . 9 (𝑌 ∈ Field → 𝑌 ∈ CRing)
1613, 15syl 17 . . . . . . . 8 (𝜑𝑌 ∈ CRing)
175crngmgp 18775 . . . . . . . 8 (𝑌 ∈ CRing → 𝐺 ∈ CMnd)
1816, 17syl 17 . . . . . . 7 (𝜑𝐺 ∈ CMnd)
19 fzfid 12986 . . . . . . 7 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
20 crngring 18778 . . . . . . . . . . . 12 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
2116, 20syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ Ring)
22 lgseisen.9 . . . . . . . . . . . 12 𝐿 = (ℤRHom‘𝑌)
2322zrhrhm 20082 . . . . . . . . . . 11 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
2421, 23syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
25 zringbas 20046 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
2625, 6rhmf 18948 . . . . . . . . . 10 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2724, 26syl 17 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘𝑌))
28 2z 11621 . . . . . . . . . 10 2 ∈ ℤ
29 elfzelz 12555 . . . . . . . . . 10 (𝑘 ∈ (1...((𝑃 − 1) / 2)) → 𝑘 ∈ ℤ)
30 zmulcl 11638 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 · 𝑘) ∈ ℤ)
3128, 29, 30sylancr 698 . . . . . . . . 9 (𝑘 ∈ (1...((𝑃 − 1) / 2)) → (2 · 𝑘) ∈ ℤ)
32 ffvelrn 6521 . . . . . . . . 9 ((𝐿:ℤ⟶(Base‘𝑌) ∧ (2 · 𝑘) ∈ ℤ) → (𝐿‘(2 · 𝑘)) ∈ (Base‘𝑌))
3327, 31, 32syl2an 495 . . . . . . . 8 ((𝜑𝑘 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑘)) ∈ (Base‘𝑌))
34 eqid 2760 . . . . . . . 8 (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) = (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘)))
3533, 34fmptd 6549 . . . . . . 7 (𝜑 → (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌))
36 fvexd 6365 . . . . . . . 8 ((𝜑𝑘 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑘)) ∈ V)
37 fvexd 6365 . . . . . . . 8 (𝜑 → (0g𝐺) ∈ V)
3834, 19, 36, 37fsuppmptdm 8453 . . . . . . 7 (𝜑 → (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) finSupp (0g𝐺))
39 lgseisen.2 . . . . . . . 8 (𝜑𝑄 ∈ (ℙ ∖ {2}))
40 lgseisen.3 . . . . . . . 8 (𝜑𝑃𝑄)
41 lgseisen.4 . . . . . . . 8 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
42 lgseisen.5 . . . . . . . 8 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
43 lgseisen.6 . . . . . . . 8 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
449, 39, 40, 41, 42, 43lgseisenlem2 25321 . . . . . . 7 (𝜑𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2)))
457, 8, 18, 19, 35, 38, 44gsumf1o 18537 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘)))) = (𝐺 Σg ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀)))
464, 45syl5eqr 2808 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = (𝐺 Σg ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀)))
479, 39, 40, 41, 42lgseisenlem1 25320 . . . . . . . 8 (𝜑𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2)))
4842fmpt 6545 . . . . . . . 8 (∀𝑥 ∈ (1...((𝑃 − 1) / 2))((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ (1...((𝑃 − 1) / 2)) ↔ 𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2)))
4947, 48sylibr 224 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (1...((𝑃 − 1) / 2))((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ (1...((𝑃 − 1) / 2)))
5042a1i 11 . . . . . . 7 (𝜑𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))
51 eqidd 2761 . . . . . . 7 (𝜑 → (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) = (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))))
52 oveq2 6822 . . . . . . . 8 (𝑘 = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) → (2 · 𝑘) = (2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))
5352fveq2d 6357 . . . . . . 7 (𝑘 = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) → (𝐿‘(2 · 𝑘)) = (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))))
5449, 50, 51, 53fmptcof 6561 . . . . . 6 (𝜑 → ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))))
5554oveq2d 6830 . . . . 5 (𝜑 → (𝐺 Σg ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))))))
5639eldifad 3727 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑄 ∈ ℙ)
5756adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℙ)
58 prmz 15611 . . . . . . . . . . . . . . . . . . . 20 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
5957, 58syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℤ)
60 2nn 11397 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ
61 elfznn 12583 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
6261adantl 473 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
63 nnmulcl 11255 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (2 · 𝑥) ∈ ℕ)
6460, 62, 63sylancr 698 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℕ)
6564nnzd 11693 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℤ)
6659, 65zmulcld 11700 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℤ)
6710adantr 472 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ)
68 prmnn 15610 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6967, 68syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
7066, 69zmodcld 12905 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈ ℕ0)
7141, 70syl5eqel 2843 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℕ0)
7271nn0zd 11692 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℤ)
73 m1expcl 13097 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℤ → (-1↑𝑅) ∈ ℤ)
7472, 73syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℤ)
7574, 72zmulcld 11700 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑅) ∈ ℤ)
7675, 69zmodcld 12905 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℕ0)
7776nn0cnd 11565 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℂ)
78 2cnd 11305 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℂ)
79 2ne0 11325 . . . . . . . . . . . 12 2 ≠ 0
8079a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ≠ 0)
8177, 78, 80divcan2d 11015 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) = (((-1↑𝑅) · 𝑅) mod 𝑃))
8281fveq2d 6357 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))) = (𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)))
8369nnrpd 12083 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℝ+)
84 eqidd 2761 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) mod 𝑃) = ((-1↑𝑅) mod 𝑃))
8541oveq1i 6824 . . . . . . . . . . . . . 14 (𝑅 mod 𝑃) = (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃)
8666zred 11694 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℝ)
87 modabs2 12918 . . . . . . . . . . . . . . 15 (((𝑄 · (2 · 𝑥)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
8886, 83, 87syl2anc 696 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
8985, 88syl5eq 2806 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑅 mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
9074, 74, 72, 66, 83, 84, 89modmul12d 12938 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃))
9175zred 11694 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑅) ∈ ℝ)
92 modabs2 12918 . . . . . . . . . . . . 13 ((((-1↑𝑅) · 𝑅) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃))
9391, 83, 92syl2anc 696 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃))
9474zcnd 11695 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℂ)
9559zcnd 11695 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℂ)
9665zcnd 11695 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℂ)
9794, 95, 96mulassd 10275 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) = ((-1↑𝑅) · (𝑄 · (2 · 𝑥))))
9897oveq1d 6829 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃))
9990, 93, 983eqtr4d 2804 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃))
10010, 68syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
101100adantr 472 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
10276nn0zd 11692 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ)
10374, 59zmulcld 11700 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑄) ∈ ℤ)
104103, 65zmulcld 11700 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) ∈ ℤ)
105 moddvds 15213 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ ∧ (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) ∈ ℤ) → (((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))))
106101, 102, 104, 105syl3anc 1477 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))))
10799, 106mpbid 222 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥))))
10869nnnn0d 11563 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ0)
10911, 22zndvds 20120 . . . . . . . . . . 11 ((𝑃 ∈ ℕ0 ∧ (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ ∧ (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) ∈ ℤ) → ((𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)) = (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))))
110108, 102, 104, 109syl3anc 1477 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)) = (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))))
111107, 110mpbird 247 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)) = (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))))
11224adantr 472 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿 ∈ (ℤring RingHom 𝑌))
113 zringmulr 20049 . . . . . . . . . . 11 · = (.r‘ℤring)
114 eqid 2760 . . . . . . . . . . 11 (.r𝑌) = (.r𝑌)
11525, 113, 114rhmmul 18949 . . . . . . . . . 10 ((𝐿 ∈ (ℤring RingHom 𝑌) ∧ ((-1↑𝑅) · 𝑄) ∈ ℤ ∧ (2 · 𝑥) ∈ ℤ) → (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) = ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥))))
116112, 103, 65, 115syl3anc 1477 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) = ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥))))
11782, 111, 1163eqtrd 2798 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))) = ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥))))
118117mpteq2dva 4896 . . . . . . 7 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥)))))
11927adantr 472 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌))
120119, 103ffvelrnd 6524 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝑌))
121119, 65ffvelrnd 6524 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ∈ (Base‘𝑌))
122 eqidd 2761 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))
123 eqidd 2761 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))
12419, 120, 121, 122, 123offval2 7080 . . . . . . 7 (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓 (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥)))))
125118, 124eqtr4d 2797 . . . . . 6 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))) = ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓 (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))
126125oveq2d 6830 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))))) = (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓 (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
12746, 55, 1263eqtrd 2798 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓 (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
1285, 114mgpplusg 18713 . . . . 5 (.r𝑌) = (+g𝐺)
129 eqid 2760 . . . . 5 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))
130 eqid 2760 . . . . 5 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))
1317, 128, 18, 19, 120, 121, 129, 130gsummptfidmadd2 18546 . . . 4 (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓 (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
132127, 131eqtrd 2794 . . 3 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
133132oveq1d 6829 . 2 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
134 eqid 2760 . . . . . 6 (Unit‘𝑌) = (Unit‘𝑌)
135134, 5unitsubm 18890 . . . . 5 (𝑌 ∈ Ring → (Unit‘𝑌) ∈ (SubMnd‘𝐺))
13621, 135syl 17 . . . 4 (𝜑 → (Unit‘𝑌) ∈ (SubMnd‘𝐺))
137 elfzle2 12558 . . . . . . . . . . 11 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ≤ ((𝑃 − 1) / 2))
138137adantl 473 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ≤ ((𝑃 − 1) / 2))
13962nnred 11247 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℝ)
140 prmuz2 15630 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
141 uz2m1nn 11976 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
14267, 140, 1413syl 18 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℕ)
143142nnred 11247 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℝ)
144 2re 11302 . . . . . . . . . . . 12 2 ∈ ℝ
145144a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℝ)
146 2pos 11324 . . . . . . . . . . . 12 0 < 2
147146a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 0 < 2)
148 lemuldiv2 11116 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑥) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2)))
149139, 143, 145, 147, 148syl112anc 1481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((2 · 𝑥) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2)))
150138, 149mpbird 247 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ≤ (𝑃 − 1))
151 prmz 15611 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
15267, 151syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ)
153 peano2zm 11632 . . . . . . . . . . 11 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
154152, 153syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℤ)
155 fznn 12621 . . . . . . . . . 10 ((𝑃 − 1) ∈ ℤ → ((2 · 𝑥) ∈ (1...(𝑃 − 1)) ↔ ((2 · 𝑥) ∈ ℕ ∧ (2 · 𝑥) ≤ (𝑃 − 1))))
156154, 155syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((2 · 𝑥) ∈ (1...(𝑃 − 1)) ↔ ((2 · 𝑥) ∈ ℕ ∧ (2 · 𝑥) ≤ (𝑃 − 1))))
15764, 150, 156mpbir2and 995 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ (1...(𝑃 − 1)))
158 fzm1ndvds 15266 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ (2 · 𝑥) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (2 · 𝑥))
15969, 157, 158syl2anc 696 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃 ∥ (2 · 𝑥))
160 eqid 2760 . . . . . . . . . 10 (0g𝑌) = (0g𝑌)
16111, 22, 160zndvds0 20121 . . . . . . . . 9 ((𝑃 ∈ ℕ0 ∧ (2 · 𝑥) ∈ ℤ) → ((𝐿‘(2 · 𝑥)) = (0g𝑌) ↔ 𝑃 ∥ (2 · 𝑥)))
162108, 65, 161syl2anc 696 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(2 · 𝑥)) = (0g𝑌) ↔ 𝑃 ∥ (2 · 𝑥)))
163162necon3abid 2968 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(2 · 𝑥)) ≠ (0g𝑌) ↔ ¬ 𝑃 ∥ (2 · 𝑥)))
164159, 163mpbird 247 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ≠ (0g𝑌))
16514simplbi 478 . . . . . . . . 9 (𝑌 ∈ Field → 𝑌 ∈ DivRing)
16613, 165syl 17 . . . . . . . 8 (𝜑𝑌 ∈ DivRing)
167166adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑌 ∈ DivRing)
1686, 134, 160drngunit 18974 . . . . . . 7 (𝑌 ∈ DivRing → ((𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌) ↔ ((𝐿‘(2 · 𝑥)) ∈ (Base‘𝑌) ∧ (𝐿‘(2 · 𝑥)) ≠ (0g𝑌))))
169167, 168syl 17 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌) ↔ ((𝐿‘(2 · 𝑥)) ∈ (Base‘𝑌) ∧ (𝐿‘(2 · 𝑥)) ≠ (0g𝑌))))
170121, 164, 169mpbir2and 995 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌))
171170, 130fmptd 6549 . . . 4 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))):(1...((𝑃 − 1) / 2))⟶(Unit‘𝑌))
172 fvexd 6365 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ∈ V)
173130, 19, 172, 37fsuppmptdm 8453 . . . 4 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))) finSupp (0g𝐺))
1748, 18, 19, 136, 171, 173gsumsubmcl 18539 . . 3 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) ∈ (Unit‘𝑌))
175 eqid 2760 . . . 4 (/r𝑌) = (/r𝑌)
176 eqid 2760 . . . 4 (1r𝑌) = (1r𝑌)
177134, 175, 176dvrid 18908 . . 3 ((𝑌 ∈ Ring ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) ∈ (Unit‘𝑌)) → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (1r𝑌))
17821, 174, 177syl2anc 696 . 2 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (1r𝑌))
179120, 129fmptd 6549 . . . 4 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌))
180 fvexd 6365 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ V)
181129, 19, 180, 37fsuppmptdm 8453 . . . 4 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) finSupp (0g𝐺))
1827, 8, 18, 19, 179, 181gsumcl 18536 . . 3 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) ∈ (Base‘𝑌))
1836, 134, 175, 114dvrcan3 18912 . . 3 ((𝑌 ∈ Ring ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) ∈ (Base‘𝑌) ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) ∈ (Unit‘𝑌)) → (((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))))
18421, 182, 174, 183syl3anc 1477 . 2 (𝜑 → (((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))))
185133, 178, 1843eqtr3rd 2803 1 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  Vcvv 3340  cdif 3712  {csn 4321   class class class wbr 4804  cmpt 4881  ccom 5270  wf 6045  cfv 6049  (class class class)co 6814  𝑓 cof 7061  Fincfn 8123  cr 10147  0cc0 10148  1c1 10149   · cmul 10153   < clt 10286  cle 10287  cmin 10478  -cneg 10479   / cdiv 10896  cn 11232  2c2 11282  0cn0 11504  cz 11589  cuz 11899  +crp 12045  ...cfz 12539   mod cmo 12882  cexp 13074  cdvds 15202  cprime 15607  Basecbs 16079  .rcmulr 16164  0gc0g 16322   Σg cgsu 16323  SubMndcsubmnd 17555  CMndccmn 18413  mulGrpcmgp 18709  1rcur 18721  Ringcrg 18767  CRingccrg 18768  Unitcui 18859  /rcdvr 18902   RingHom crh 18934  DivRingcdr 18969  Fieldcfield 18970  ringzring 20040  ℤRHomczrh 20070  ℤ/nczn 20073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-ec 7915  df-qs 7919  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-xnn0 11576  df-z 11590  df-dec 11706  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-dvds 15203  df-gcd 15439  df-prm 15608  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-0g 16324  df-gsum 16325  df-imas 16390  df-qus 16391  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-subg 17812  df-nsg 17813  df-eqg 17814  df-ghm 17879  df-cntz 17970  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-dvr 18903  df-rnghom 18937  df-drng 18971  df-field 18972  df-subrg 19000  df-lmod 19087  df-lss 19155  df-lsp 19194  df-sra 19394  df-rgmod 19395  df-lidl 19396  df-rsp 19397  df-2idl 19454  df-nzr 19480  df-rlreg 19505  df-domn 19506  df-idom 19507  df-cnfld 19969  df-zring 20041  df-zrh 20074  df-zn 20077
This theorem is referenced by:  lgseisenlem4  25323
  Copyright terms: Public domain W3C validator