MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2 Structured version   Visualization version   GIF version

Theorem lgsdir2 25254
Description: The Legendre symbol is completely multiplicative at 2. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))

Proof of Theorem lgsdir2
StepHypRef Expression
1 0cn 10224 . . . . . 6 0 ∈ ℂ
2 ax-1cn 10186 . . . . . . 7 1 ∈ ℂ
3 neg1cn 11316 . . . . . . 7 -1 ∈ ℂ
42, 3keepel 4299 . . . . . 6 if((𝐵 mod 8) ∈ {1, 7}, 1, -1) ∈ ℂ
51, 4keepel 4299 . . . . 5 if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℂ
65mul02i 10417 . . . 4 (0 · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = 0
7 iftrue 4236 . . . . . 6 (2 ∥ 𝐴 → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = 0)
87adantl 473 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = 0)
98oveq1d 6828 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (0 · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))))
10 2z 11601 . . . . . . 7 2 ∈ ℤ
11 dvdsmultr1 15221 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐴 → 2 ∥ (𝐴 · 𝐵)))
1210, 11mp3an1 1560 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐴 → 2 ∥ (𝐴 · 𝐵)))
1312imp 444 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → 2 ∥ (𝐴 · 𝐵))
1413iftrued 4238 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = 0)
156, 9, 143eqtr4a 2820 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
162, 3keepel 4299 . . . . . 6 if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ ℂ
171, 16keepel 4299 . . . . 5 if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℂ
1817mul01i 10418 . . . 4 (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · 0) = 0
19 iftrue 4236 . . . . . 6 (2 ∥ 𝐵 → if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = 0)
2019adantl 473 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = 0)
2120oveq2d 6829 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · 0))
22 dvdsmultr2 15223 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐵 → 2 ∥ (𝐴 · 𝐵)))
2310, 22mp3an1 1560 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐵 → 2 ∥ (𝐴 · 𝐵)))
2423imp 444 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 · 𝐵))
2524iftrued 4238 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = 0)
2618, 21, 253eqtr4a 2820 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
274mulid2i 10235 . . . . . 6 (1 · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐵 mod 8) ∈ {1, 7}, 1, -1)
28 iftrue 4236 . . . . . . . 8 ((𝐴 mod 8) ∈ {1, 7} → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = 1)
2928adantl 473 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = 1)
3029oveq1d 6828 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (1 · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
31 lgsdir2lem4 25252 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
3231adantlr 753 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
3332ifbid 4252 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) = if((𝐵 mod 8) ∈ {1, 7}, 1, -1))
3427, 30, 333eqtr4a 2820 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
3516mulid1i 10234 . . . . . 6 (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · 1) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1)
36 iftrue 4236 . . . . . . . 8 ((𝐵 mod 8) ∈ {1, 7} → if((𝐵 mod 8) ∈ {1, 7}, 1, -1) = 1)
3736adantl 473 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → if((𝐵 mod 8) ∈ {1, 7}, 1, -1) = 1)
3837oveq2d 6829 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · 1))
39 zcn 11574 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
40 zcn 11574 . . . . . . . . . . . 12 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
41 mulcom 10214 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4239, 40, 41syl2an 495 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4342ad2antrr 764 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4443oveq1d 6828 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → ((𝐴 · 𝐵) mod 8) = ((𝐵 · 𝐴) mod 8))
4544eleq1d 2824 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ ((𝐵 · 𝐴) mod 8) ∈ {1, 7}))
46 lgsdir2lem4 25252 . . . . . . . . . 10 (((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
4746ancom1s 882 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
4847adantlr 753 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
4945, 48bitrd 268 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
5049ifbid 4252 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
5135, 38, 503eqtr4a 2820 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
52 neg1mulneg1e1 11437 . . . . . 6 (-1 · -1) = 1
53 iffalse 4239 . . . . . . . 8 (¬ (𝐴 mod 8) ∈ {1, 7} → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = -1)
54 iffalse 4239 . . . . . . . 8 (¬ (𝐵 mod 8) ∈ {1, 7} → if((𝐵 mod 8) ∈ {1, 7}, 1, -1) = -1)
5553, 54oveqan12d 6832 . . . . . . 7 ((¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (-1 · -1))
5655adantl 473 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (-1 · -1))
57 lgsdir2lem3 25251 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
5857ad2ant2r 800 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
59 elun 3896 . . . . . . . . . . 11 ((𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ ((𝐴 mod 8) ∈ {1, 7} ∨ (𝐴 mod 8) ∈ {3, 5}))
6058, 59sylib 208 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → ((𝐴 mod 8) ∈ {1, 7} ∨ (𝐴 mod 8) ∈ {3, 5}))
6160orcanai 990 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ ¬ (𝐴 mod 8) ∈ {1, 7}) → (𝐴 mod 8) ∈ {3, 5})
62 lgsdir2lem3 25251 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵) → (𝐵 mod 8) ∈ ({1, 7} ∪ {3, 5}))
6362ad2ant2l 799 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (𝐵 mod 8) ∈ ({1, 7} ∪ {3, 5}))
64 elun 3896 . . . . . . . . . . 11 ((𝐵 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ ((𝐵 mod 8) ∈ {1, 7} ∨ (𝐵 mod 8) ∈ {3, 5}))
6563, 64sylib 208 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → ((𝐵 mod 8) ∈ {1, 7} ∨ (𝐵 mod 8) ∈ {3, 5}))
6665orcanai 990 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ ¬ (𝐵 mod 8) ∈ {1, 7}) → (𝐵 mod 8) ∈ {3, 5})
6761, 66anim12dan 918 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5}))
68 lgsdir2lem5 25253 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
6968adantlr 753 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
7067, 69syldan 488 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
7170iftrued 4238 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) = 1)
7252, 56, 713eqtr4a 2820 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
7334, 51, 72pm2.61ddan 868 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
74 iffalse 4239 . . . . . 6 (¬ 2 ∥ 𝐴 → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
75 iffalse 4239 . . . . . 6 (¬ 2 ∥ 𝐵 → if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐵 mod 8) ∈ {1, 7}, 1, -1))
7674, 75oveqan12d 6832 . . . . 5 ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
7776adantl 473 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
78 ioran 512 . . . . . 6 (¬ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵) ↔ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵))
79 2prm 15607 . . . . . . . . 9 2 ∈ ℙ
80 euclemma 15627 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ (𝐴 · 𝐵) ↔ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)))
8179, 80mp3an1 1560 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ (𝐴 · 𝐵) ↔ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)))
8281notbid 307 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 2 ∥ (𝐴 · 𝐵) ↔ ¬ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)))
8382biimpar 503 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 · 𝐵))
8478, 83sylan2br 494 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 · 𝐵))
85 iffalse 4239 . . . . 5 (¬ 2 ∥ (𝐴 · 𝐵) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
8684, 85syl 17 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
8773, 77, 863eqtr4d 2804 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
8815, 26, 87pm2.61ddan 868 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
89 lgs2 25238 . . 3 (𝐴 ∈ ℤ → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
90 lgs2 25238 . . 3 (𝐵 ∈ ℤ → (𝐵 /L 2) = if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
9189, 90oveqan12d 6832 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 /L 2) · (𝐵 /L 2)) = (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))))
92 zmulcl 11618 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ)
93 lgs2 25238 . . 3 ((𝐴 · 𝐵) ∈ ℤ → ((𝐴 · 𝐵) /L 2) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
9492, 93syl 17 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
9588, 91, 943eqtr4rd 2805 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139  cun 3713  ifcif 4230  {cpr 4323   class class class wbr 4804  (class class class)co 6813  cc 10126  0cc0 10128  1c1 10129   · cmul 10133  -cneg 10459  2c2 11262  3c3 11263  5c5 11265  7c7 11267  8c8 11268  cz 11569   mod cmo 12862  cdvds 15182  cprime 15587   /L clgs 25218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-dvds 15183  df-gcd 15419  df-prm 15588  df-phi 15673  df-pc 15744  df-lgs 25219
This theorem is referenced by:  lgsdirprm  25255
  Copyright terms: Public domain W3C validator