MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdinn0 Structured version   Visualization version   GIF version

Theorem lgsdinn0 25290
Description: Variation on lgsdi 25279 valid for all 𝑀, 𝑁 but only for positive 𝐴. (The exact location of the failure of this law is for 𝐴 = -1, 𝑀 = 0, and some 𝑁 in which case (-1 /L 0) = 1 but (-1 /L 𝑁) = -1 when -1 is not a quadratic residue mod 𝑁.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdinn0 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))

Proof of Theorem lgsdinn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 6822 . . . . . . . 8 (𝑥 = 𝑁 → (𝐴 /L 𝑥) = (𝐴 /L 𝑁))
21oveq1d 6829 . . . . . . 7 (𝑥 = 𝑁 → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
32eqeq2d 2770 . . . . . 6 (𝑥 = 𝑁 → ((𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)) ↔ (𝐴 /L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0))))
4 sq1 13172 . . . . . . . . . . . . . . . 16 (1↑2) = 1
54eqeq2i 2772 . . . . . . . . . . . . . . 15 ((𝐴↑2) = (1↑2) ↔ (𝐴↑2) = 1)
6 nn0re 11513 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
7 nn0ge0 11530 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
8 1re 10251 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
9 0le1 10763 . . . . . . . . . . . . . . . . . 18 0 ≤ 1
10 sq11 13150 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
118, 9, 10mpanr12 723 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
126, 7, 11syl2anc 696 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ0 → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
1312adantr 472 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
145, 13syl5bbr 274 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐴↑2) = 1 ↔ 𝐴 = 1))
1514biimpa 502 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → 𝐴 = 1)
1615oveq1d 6829 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 𝑥) = (1 /L 𝑥))
17 1lgs 25285 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (1 /L 𝑥) = 1)
1817ad2antlr 765 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (1 /L 𝑥) = 1)
1916, 18eqtrd 2794 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 𝑥) = 1)
2019oveq1d 6829 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = (1 · (𝐴 /L 0)))
21 nn0z 11612 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2221ad2antrr 764 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → 𝐴 ∈ ℤ)
23 0z 11600 . . . . . . . . . . . . 13 0 ∈ ℤ
24 lgscl 25256 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 /L 0) ∈ ℤ)
2522, 23, 24sylancl 697 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 0) ∈ ℤ)
2625zcnd 11695 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 0) ∈ ℂ)
2726mulid2d 10270 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (1 · (𝐴 /L 0)) = (𝐴 /L 0))
2820, 27eqtr2d 2795 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) = 1) → (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
29 lgscl 25256 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈ ℤ)
3021, 29sylan 489 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈ ℤ)
3130zcnd 11695 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 𝑥) ∈ ℂ)
3231adantr 472 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → (𝐴 /L 𝑥) ∈ ℂ)
3332mul01d 10447 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → ((𝐴 /L 𝑥) · 0) = 0)
3421adantr 472 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → 𝐴 ∈ ℤ)
35 lgs0 25255 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
3634, 35syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
37 ifnefalse 4242 . . . . . . . . . . . 12 ((𝐴↑2) ≠ 1 → if((𝐴↑2) = 1, 1, 0) = 0)
3836, 37sylan9eq 2814 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → (𝐴 /L 0) = 0)
3938oveq2d 6830 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑥) · 0))
4033, 39, 383eqtr4rd 2805 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ ℤ) ∧ (𝐴↑2) ≠ 1) → (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
4128, 40pm2.61dane 3019 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑥 ∈ ℤ) → (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
4241ralrimiva 3104 . . . . . . 7 (𝐴 ∈ ℕ0 → ∀𝑥 ∈ ℤ (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
43423ad2ant1 1128 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∀𝑥 ∈ ℤ (𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)))
44 simp3 1133 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
453, 43, 44rspcdva 3455 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
4645adantr 472 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 0) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
47213ad2ant1 1128 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℤ)
4847, 23, 24sylancl 697 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) ∈ ℤ)
4948zcnd 11695 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) ∈ ℂ)
5049adantr 472 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 0) ∈ ℂ)
51 lgscl 25256 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
5247, 44, 51syl2anc 696 . . . . . . 7 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
5352zcnd 11695 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℂ)
5453adantr 472 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 𝑁) ∈ ℂ)
5550, 54mulcomd 10273 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 /L 0) · (𝐴 /L 𝑁)) = ((𝐴 /L 𝑁) · (𝐴 /L 0)))
5646, 55eqtr4d 2797 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 0) = ((𝐴 /L 0) · (𝐴 /L 𝑁)))
57 oveq1 6821 . . . . 5 (𝑀 = 0 → (𝑀 · 𝑁) = (0 · 𝑁))
5844zcnd 11695 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
5958mul02d 10446 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑁) = 0)
6057, 59sylan9eqr 2816 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 · 𝑁) = 0)
6160oveq2d 6830 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L (𝑀 · 𝑁)) = (𝐴 /L 0))
62 simpr 479 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0)
6362oveq2d 6830 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L 𝑀) = (𝐴 /L 0))
6463oveq1d 6829 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((𝐴 /L 0) · (𝐴 /L 𝑁)))
6556, 61, 643eqtr4d 2804 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
66 oveq2 6822 . . . . . . 7 (𝑥 = 𝑀 → (𝐴 /L 𝑥) = (𝐴 /L 𝑀))
6766oveq1d 6829 . . . . . 6 (𝑥 = 𝑀 → ((𝐴 /L 𝑥) · (𝐴 /L 0)) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
6867eqeq2d 2770 . . . . 5 (𝑥 = 𝑀 → ((𝐴 /L 0) = ((𝐴 /L 𝑥) · (𝐴 /L 0)) ↔ (𝐴 /L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0))))
69 simp2 1132 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
7068, 43, 69rspcdva 3455 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
7170adantr 472 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L 0) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
72 oveq2 6822 . . . . 5 (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0))
7369zcnd 11695 . . . . . 6 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
7473mul01d 10447 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 0) = 0)
7572, 74sylan9eqr 2816 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 · 𝑁) = 0)
7675oveq2d 6830 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L (𝑀 · 𝑁)) = (𝐴 /L 0))
77 simpr 479 . . . . 5 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝑁 = 0)
7877oveq2d 6830 . . . 4 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L 𝑁) = (𝐴 /L 0))
7978oveq2d 6830 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 0)))
8071, 76, 793eqtr4d 2804 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
81 lgsdi 25279 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
8221, 81syl3anl1 1521 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
8365, 80, 82pm2.61da2ne 3020 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  ifcif 4230   class class class wbr 4804  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148  1c1 10149   · cmul 10153  cle 10287  2c2 11282  0cn0 11504  cz 11589  cexp 13074   /L clgs 25239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-q 12002  df-rp 12046  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-dvds 15203  df-gcd 15439  df-prm 15608  df-phi 15693  df-pc 15764  df-lgs 25240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator