MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdchrval Structured version   Visualization version   GIF version

Theorem lgsdchrval 25270
Description: The Legendre symbol function 𝑋(𝑚) = (𝑚 /L 𝑁), where 𝑁 is an odd positive number, is a Dirichlet character modulo 𝑁. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
lgsdchr.g 𝐺 = (DChr‘𝑁)
lgsdchr.z 𝑍 = (ℤ/nℤ‘𝑁)
lgsdchr.d 𝐷 = (Base‘𝐺)
lgsdchr.b 𝐵 = (Base‘𝑍)
lgsdchr.l 𝐿 = (ℤRHom‘𝑍)
lgsdchr.x 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
Assertion
Ref Expression
lgsdchrval (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (𝑋‘(𝐿𝐴)) = (𝐴 /L 𝑁))
Distinct variable groups:   𝑦,𝐵   ,𝑚,𝑦,𝐿   ,𝑁,𝑚,𝑦   𝑦,𝑋   𝐴,,𝑚,𝑦   𝑦,𝑍
Allowed substitution hints:   𝐵(,𝑚)   𝐷(𝑦,,𝑚)   𝐺(𝑦,,𝑚)   𝑋(,𝑚)   𝑍(,𝑚)

Proof of Theorem lgsdchrval
StepHypRef Expression
1 nnnn0 11483 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
21adantr 472 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ0)
3 lgsdchr.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
4 lgsdchr.b . . . . . 6 𝐵 = (Base‘𝑍)
5 lgsdchr.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
63, 4, 5znzrhfo 20090 . . . . 5 (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)
7 fof 6268 . . . . 5 (𝐿:ℤ–onto𝐵𝐿:ℤ⟶𝐵)
82, 6, 73syl 18 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝐿:ℤ⟶𝐵)
98ffvelrnda 6514 . . 3 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (𝐿𝐴) ∈ 𝐵)
10 eqeq1 2756 . . . . . . 7 (𝑦 = (𝐿𝐴) → (𝑦 = (𝐿𝑚) ↔ (𝐿𝐴) = (𝐿𝑚)))
1110anbi1d 743 . . . . . 6 (𝑦 = (𝐿𝐴) → ((𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) ↔ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
1211rexbidv 3182 . . . . 5 (𝑦 = (𝐿𝐴) → (∃𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) ↔ ∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
1312iotabidv 6025 . . . 4 (𝑦 = (𝐿𝐴) → (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) = (℩𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
14 lgsdchr.x . . . 4 𝑋 = (𝑦𝐵 ↦ (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
15 iotaex 6021 . . . 4 (℩𝑚 ∈ ℤ (𝑦 = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) ∈ V
1613, 14, 15fvmpt3i 6441 . . 3 ((𝐿𝐴) ∈ 𝐵 → (𝑋‘(𝐿𝐴)) = (℩𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
179, 16syl 17 . 2 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (𝑋‘(𝐿𝐴)) = (℩𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
18 ovex 6833 . . 3 (𝐴 /L 𝑁) ∈ V
19 simprr 813 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → (𝐿𝐴) = (𝐿𝑚))
20 simplll 815 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → 𝑁 ∈ ℕ)
2120, 1syl 17 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → 𝑁 ∈ ℕ0)
22 simplr 809 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → 𝐴 ∈ ℤ)
23 simprl 811 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → 𝑚 ∈ ℤ)
243, 5zndvds 20092 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝐿𝐴) = (𝐿𝑚) ↔ 𝑁 ∥ (𝐴𝑚)))
2521, 22, 23, 24syl3anc 1473 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ((𝐿𝐴) = (𝐿𝑚) ↔ 𝑁 ∥ (𝐴𝑚)))
2619, 25mpbid 222 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → 𝑁 ∥ (𝐴𝑚))
27 moddvds 15185 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝑚 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝑚)))
2820, 22, 23, 27syl3anc 1473 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ((𝐴 mod 𝑁) = (𝑚 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝑚)))
2926, 28mpbird 247 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → (𝐴 mod 𝑁) = (𝑚 mod 𝑁))
3029oveq1d 6820 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ((𝐴 mod 𝑁) /L 𝑁) = ((𝑚 mod 𝑁) /L 𝑁))
31 simpllr 817 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ¬ 2 ∥ 𝑁)
32 lgsmod 25239 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))
3322, 20, 31, 32syl3anc 1473 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))
34 lgsmod 25239 . . . . . . . . . . . . 13 ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝑚 mod 𝑁) /L 𝑁) = (𝑚 /L 𝑁))
3523, 20, 31, 34syl3anc 1473 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ((𝑚 mod 𝑁) /L 𝑁) = (𝑚 /L 𝑁))
3630, 33, 353eqtr3d 2794 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → (𝐴 /L 𝑁) = (𝑚 /L 𝑁))
3736eqeq2d 2762 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ( = (𝐴 /L 𝑁) ↔ = (𝑚 /L 𝑁)))
3837biimprd 238 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝐿𝐴) = (𝐿𝑚))) → ( = (𝑚 /L 𝑁) → = (𝐴 /L 𝑁)))
3938anassrs 683 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ 𝑚 ∈ ℤ) ∧ (𝐿𝐴) = (𝐿𝑚)) → ( = (𝑚 /L 𝑁) → = (𝐴 /L 𝑁)))
4039expimpd 630 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) → = (𝐴 /L 𝑁)))
4140rexlimdva 3161 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) → = (𝐴 /L 𝑁)))
42 fveq2 6344 . . . . . . . . . . . 12 (𝑚 = 𝐴 → (𝐿𝑚) = (𝐿𝐴))
4342eqcomd 2758 . . . . . . . . . . 11 (𝑚 = 𝐴 → (𝐿𝐴) = (𝐿𝑚))
4443biantrurd 530 . . . . . . . . . 10 (𝑚 = 𝐴 → ( = (𝑚 /L 𝑁) ↔ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
45 oveq1 6812 . . . . . . . . . . 11 (𝑚 = 𝐴 → (𝑚 /L 𝑁) = (𝐴 /L 𝑁))
4645eqeq2d 2762 . . . . . . . . . 10 (𝑚 = 𝐴 → ( = (𝑚 /L 𝑁) ↔ = (𝐴 /L 𝑁)))
4744, 46bitr3d 270 . . . . . . . . 9 (𝑚 = 𝐴 → (((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) ↔ = (𝐴 /L 𝑁)))
4847rspcev 3441 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ = (𝐴 /L 𝑁)) → ∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)))
4948ex 449 . . . . . . 7 (𝐴 ∈ ℤ → ( = (𝐴 /L 𝑁) → ∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
5049adantl 473 . . . . . 6 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → ( = (𝐴 /L 𝑁) → ∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))))
5141, 50impbid 202 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) ↔ = (𝐴 /L 𝑁)))
5251adantr 472 . . . 4 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝐴 /L 𝑁) ∈ V) → (∃𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁)) ↔ = (𝐴 /L 𝑁)))
5352iota5 6024 . . 3 ((((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) ∧ (𝐴 /L 𝑁) ∈ V) → (℩𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) = (𝐴 /L 𝑁))
5418, 53mpan2 709 . 2 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (℩𝑚 ∈ ℤ ((𝐿𝐴) = (𝐿𝑚) ∧ = (𝑚 /L 𝑁))) = (𝐴 /L 𝑁))
5517, 54eqtrd 2786 1 (((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝐴 ∈ ℤ) → (𝑋‘(𝐿𝐴)) = (𝐴 /L 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  wrex 3043  Vcvv 3332   class class class wbr 4796  cmpt 4873  cio 6002  wf 6037  ontowfo 6039  cfv 6041  (class class class)co 6805  cmin 10450  cn 11204  2c2 11254  0cn0 11476  cz 11561   mod cmo 12854  cdvds 15174  Basecbs 16051  ℤRHomczrh 20042  ℤ/nczn 20045  DChrcdchr 25148   /L clgs 25210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-tpos 7513  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-ec 7905  df-qs 7909  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-inf 8506  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-xnn0 11548  df-z 11562  df-dec 11678  df-uz 11872  df-q 11974  df-rp 12018  df-fz 12512  df-fzo 12652  df-fl 12779  df-mod 12855  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-dvds 15175  df-gcd 15411  df-prm 15580  df-phi 15665  df-pc 15736  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-0g 16296  df-imas 16362  df-qus 16363  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-mhm 17528  df-grp 17618  df-minusg 17619  df-sbg 17620  df-mulg 17734  df-subg 17784  df-nsg 17785  df-eqg 17786  df-ghm 17851  df-cmn 18387  df-abl 18388  df-mgp 18682  df-ur 18694  df-ring 18741  df-cring 18742  df-oppr 18815  df-dvdsr 18833  df-rnghom 18909  df-subrg 18972  df-lmod 19059  df-lss 19127  df-lsp 19166  df-sra 19366  df-rgmod 19367  df-lidl 19368  df-rsp 19369  df-2idl 19426  df-cnfld 19941  df-zring 20013  df-zrh 20046  df-zn 20049  df-lgs 25211
This theorem is referenced by:  lgsdchr  25271
  Copyright terms: Public domain W3C validator