![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lgscllem | Structured version Visualization version GIF version |
Description: The Legendre symbol is an element of 𝑍. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
lgsval.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) |
lgsfcl2.z | ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} |
Ref | Expression |
---|---|
lgscllem | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgsval.1 | . . 3 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) | |
2 | 1 | lgsval 25225 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))) |
3 | lgsfcl2.z | . . . . . . 7 ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} | |
4 | 3 | lgslem2 25222 | . . . . . 6 ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
5 | 4 | simp3i 1136 | . . . . 5 ⊢ 1 ∈ 𝑍 |
6 | 4 | simp2i 1135 | . . . . 5 ⊢ 0 ∈ 𝑍 |
7 | 5, 6 | keepel 4299 | . . . 4 ⊢ if((𝐴↑2) = 1, 1, 0) ∈ 𝑍 |
8 | 7 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → if((𝐴↑2) = 1, 1, 0) ∈ 𝑍) |
9 | 4 | simp1i 1134 | . . . . 5 ⊢ -1 ∈ 𝑍 |
10 | 9, 5 | keepel 4299 | . . . 4 ⊢ if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ 𝑍 |
11 | simplr 809 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ) | |
12 | simpr 479 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0) | |
13 | 12 | neqned 2939 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0) |
14 | nnabscl 14264 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ) | |
15 | 11, 13, 14 | syl2anc 696 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (abs‘𝑁) ∈ ℕ) |
16 | nnuz 11916 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
17 | 15, 16 | syl6eleq 2849 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (abs‘𝑁) ∈ (ℤ≥‘1)) |
18 | df-ne 2933 | . . . . . . 7 ⊢ (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0) | |
19 | 1, 3 | lgsfcl2 25227 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍) |
20 | 19 | 3expa 1112 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍) |
21 | 18, 20 | sylan2br 494 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝐹:ℕ⟶𝑍) |
22 | elfznn 12563 | . . . . . 6 ⊢ (𝑦 ∈ (1...(abs‘𝑁)) → 𝑦 ∈ ℕ) | |
23 | ffvelrn 6520 | . . . . . 6 ⊢ ((𝐹:ℕ⟶𝑍 ∧ 𝑦 ∈ ℕ) → (𝐹‘𝑦) ∈ 𝑍) | |
24 | 21, 22, 23 | syl2an 495 | . . . . 5 ⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ (1...(abs‘𝑁))) → (𝐹‘𝑦) ∈ 𝑍) |
25 | 3 | lgslem3 25223 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑍 ∧ 𝑧 ∈ 𝑍) → (𝑦 · 𝑧) ∈ 𝑍) |
26 | 25 | adantl 473 | . . . . 5 ⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) ∧ (𝑦 ∈ 𝑍 ∧ 𝑧 ∈ 𝑍)) → (𝑦 · 𝑧) ∈ 𝑍) |
27 | 17, 24, 26 | seqcl 13015 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (seq1( · , 𝐹)‘(abs‘𝑁)) ∈ 𝑍) |
28 | 3 | lgslem3 25223 | . . . 4 ⊢ ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ 𝑍 ∧ (seq1( · , 𝐹)‘(abs‘𝑁)) ∈ 𝑍) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ 𝑍) |
29 | 10, 27, 28 | sylancr 698 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ 𝑍) |
30 | 8, 29 | ifclda 4264 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) ∈ 𝑍) |
31 | 2, 30 | eqeltrd 2839 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 {crab 3054 ifcif 4230 {cpr 4323 class class class wbr 4804 ↦ cmpt 4881 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 0cc0 10128 1c1 10129 + caddc 10131 · cmul 10133 < clt 10266 ≤ cle 10267 − cmin 10458 -cneg 10459 / cdiv 10876 ℕcn 11212 2c2 11262 7c7 11267 8c8 11268 ℤcz 11569 ℤ≥cuz 11879 ...cfz 12519 mod cmo 12862 seqcseq 12995 ↑cexp 13054 abscabs 14173 ∥ cdvds 15182 ℙcprime 15587 pCnt cpc 15743 /L clgs 25218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-sup 8513 df-inf 8514 df-card 8955 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-xnn0 11556 df-z 11570 df-uz 11880 df-q 11982 df-rp 12026 df-fz 12520 df-fzo 12660 df-fl 12787 df-mod 12863 df-seq 12996 df-exp 13055 df-hash 13312 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-dvds 15183 df-gcd 15419 df-prm 15588 df-phi 15673 df-pc 15744 df-lgs 25219 |
This theorem is referenced by: lgscl2 25233 |
Copyright terms: Public domain | W3C validator |