Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamcvglem Structured version   Visualization version   GIF version

Theorem lgamcvglem 24986
 Description: Lemma for lgamf 24988 and lgamcvg 25000. (Contributed by Mario Carneiro, 8-Jul-2017.)
Hypotheses
Ref Expression
lgamucov.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))}
lgamucov.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
lgamcvglem.g 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
Assertion
Ref Expression
lgamcvglem (𝜑 → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))))
Distinct variable groups:   𝑘,𝑚,𝑟,𝑥,𝐴   𝐺,𝑟   𝜑,𝑘,𝑚,𝑟,𝑥   𝑈,𝑚
Allowed substitution hints:   𝑈(𝑥,𝑘,𝑟)   𝐺(𝑥,𝑘,𝑚)

Proof of Theorem lgamcvglem
Dummy variables 𝑛 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgamucov.u . . 3 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))}
2 lgamucov.a . . 3 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
31, 2lgamucov2 24985 . 2 (𝜑 → ∃𝑟 ∈ ℕ 𝐴𝑈)
4 fveq2 6353 . . . . 5 (𝑧 = 𝐴 → (log Γ‘𝑧) = (log Γ‘𝐴))
54eleq1d 2824 . . . 4 (𝑧 = 𝐴 → ((log Γ‘𝑧) ∈ ℂ ↔ (log Γ‘𝐴) ∈ ℂ))
6 simprl 811 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → 𝑟 ∈ ℕ)
7 fveq2 6353 . . . . . . . . . 10 (𝑥 = 𝑡 → (abs‘𝑥) = (abs‘𝑡))
87breq1d 4814 . . . . . . . . 9 (𝑥 = 𝑡 → ((abs‘𝑥) ≤ 𝑟 ↔ (abs‘𝑡) ≤ 𝑟))
9 oveq1 6821 . . . . . . . . . . . 12 (𝑥 = 𝑡 → (𝑥 + 𝑘) = (𝑡 + 𝑘))
109fveq2d 6357 . . . . . . . . . . 11 (𝑥 = 𝑡 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑡 + 𝑘)))
1110breq2d 4816 . . . . . . . . . 10 (𝑥 = 𝑡 → ((1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘))))
1211ralbidv 3124 . . . . . . . . 9 (𝑥 = 𝑡 → (∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘))))
138, 12anbi12d 749 . . . . . . . 8 (𝑥 = 𝑡 → (((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))))
1413cbvrabv 3339 . . . . . . 7 {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))}
151, 14eqtri 2782 . . . . . 6 𝑈 = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))}
16 eqid 2760 . . . . . 6 (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
176, 15, 16lgamgulm2 24982 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → (∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))))
1817simpld 477 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → ∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ)
19 simprr 813 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → 𝐴𝑈)
205, 18, 19rspcdva 3455 . . 3 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → (log Γ‘𝐴) ∈ ℂ)
21 nnuz 11936 . . . . 5 ℕ = (ℤ‘1)
22 1zzd 11620 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → 1 ∈ ℤ)
23 1z 11619 . . . . . . . 8 1 ∈ ℤ
24 seqfn 13027 . . . . . . . 8 (1 ∈ ℤ → seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn (ℤ‘1))
2523, 24ax-mp 5 . . . . . . 7 seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn (ℤ‘1)
2621fneq2i 6147 . . . . . . 7 (seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ ↔ seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn (ℤ‘1))
2725, 26mpbir 221 . . . . . 6 seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ
2817simprd 482 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
29 ulmf2 24357 . . . . . 6 ((seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ ∧ seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))) → seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))):ℕ⟶(ℂ ↑𝑚 𝑈))
3027, 28, 29sylancr 698 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))):ℕ⟶(ℂ ↑𝑚 𝑈))
31 seqex 13017 . . . . . 6 seq1( + , 𝐺) ∈ V
3231a1i 11 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( + , 𝐺) ∈ V)
33 cnex 10229 . . . . . . . . 9 ℂ ∈ V
341, 33rabex2 4966 . . . . . . . 8 𝑈 ∈ V
3534a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑈 ∈ V)
36 simpr 479 . . . . . . . 8 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
3736, 21syl6eleq 2849 . . . . . . 7 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
38 fz1ssnn 12585 . . . . . . . 8 (1...𝑛) ⊆ ℕ
3938a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
40 ovexd 6844 . . . . . . 7 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ (𝑚 ∈ ℕ ∧ 𝑧𝑈)) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ V)
4135, 37, 39, 40seqof2 13073 . . . . . 6 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → (seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)))
42 simplr 809 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → 𝑧 = 𝐴)
4342oveq1d 6829 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) = (𝐴 · (log‘((𝑚 + 1) / 𝑚))))
4442oveq1d 6829 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 / 𝑚) = (𝐴 / 𝑚))
4544oveq1d 6829 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → ((𝑧 / 𝑚) + 1) = ((𝐴 / 𝑚) + 1))
4645fveq2d 6357 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (log‘((𝑧 / 𝑚) + 1)) = (log‘((𝐴 / 𝑚) + 1)))
4743, 46oveq12d 6832 . . . . . . . . . 10 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) = ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
4847mpteq2dva 4896 . . . . . . . . 9 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))))
49 lgamcvglem.g . . . . . . . . 9 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
5048, 49syl6eqr 2812 . . . . . . . 8 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = 𝐺)
5150seqeq3d 13023 . . . . . . 7 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) = seq1( + , 𝐺))
5251fveq1d 6355 . . . . . 6 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛) = (seq1( + , 𝐺)‘𝑛))
53 simplrr 820 . . . . . 6 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → 𝐴𝑈)
54 fvexd 6365 . . . . . 6 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → (seq1( + , 𝐺)‘𝑛) ∈ V)
5541, 52, 53, 54fvmptd 6451 . . . . 5 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → ((seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛)‘𝐴) = (seq1( + , 𝐺)‘𝑛))
5621, 22, 30, 19, 32, 55, 28ulmclm 24360 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( + , 𝐺) ⇝ ((𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴))
57 fveq2 6353 . . . . . . 7 (𝑧 = 𝐴 → (log‘𝑧) = (log‘𝐴))
584, 57oveq12d 6832 . . . . . 6 (𝑧 = 𝐴 → ((log Γ‘𝑧) + (log‘𝑧)) = ((log Γ‘𝐴) + (log‘𝐴)))
59 eqid 2760 . . . . . 6 (𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))) = (𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))
60 ovex 6842 . . . . . 6 ((log Γ‘𝐴) + (log‘𝐴)) ∈ V
6158, 59, 60fvmpt 6445 . . . . 5 (𝐴𝑈 → ((𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴) = ((log Γ‘𝐴) + (log‘𝐴)))
6219, 61syl 17 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → ((𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴) = ((log Γ‘𝐴) + (log‘𝐴)))
6356, 62breqtrd 4830 . . 3 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))
6420, 63jca 555 . 2 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))))
653, 64rexlimddv 3173 1 (𝜑 → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  {crab 3054  Vcvv 3340   ∖ cdif 3712   ⊆ wss 3715   class class class wbr 4804   ↦ cmpt 4881   Fn wfn 6044  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814   ∘𝑓 cof 7061   ↑𝑚 cmap 8025  ℂcc 10146  1c1 10149   + caddc 10151   · cmul 10153   ≤ cle 10287   − cmin 10478   / cdiv 10896  ℕcn 11232  ℕ0cn0 11504  ℤcz 11589  ℤ≥cuz 11899  ...cfz 12539  seqcseq 13015  abscabs 14193   ⇝ cli 14434  ⇝𝑢culm 24349  logclog 24521  log Γclgam 24962 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15017  df-sin 15019  df-cos 15020  df-tan 15021  df-pi 15022  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-cmp 21412  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850  df-ulm 24350  df-log 24523  df-cxp 24524  df-lgam 24965 This theorem is referenced by:  lgamcl  24987  lgamcvg  25000
 Copyright terms: Public domain W3C validator