MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgambdd Structured version   Visualization version   GIF version

Theorem lgambdd 24984
Description: The log-Gamma function is bounded on the region 𝑈. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
Assertion
Ref Expression
lgambdd (𝜑 → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟)
Distinct variable groups:   𝐺,𝑟   𝑘,𝑚,𝑟,𝑥,𝑧,𝑅   𝑈,𝑚,𝑟,𝑧   𝜑,𝑚,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgambdd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lgamgulm.r . . . . 5 (𝜑𝑅 ∈ ℕ)
2 lgamgulm.u . . . . 5 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
3 lgamgulm.g . . . . 5 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
41, 2, 3lgamgulm2 24983 . . . 4 (𝜑 → (∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))))
54simprd 483 . . 3 (𝜑 → seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
6 eqid 2771 . . . . 5 (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
71, 2, 3, 6lgamgulmlem6 24981 . . . 4 (𝜑 → (seq1( ∘𝑓 + , 𝐺) ∈ dom (⇝𝑢𝑈) ∧ (seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))) → ∃𝑦 ∈ ℝ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)))
87simprd 483 . . 3 (𝜑 → (seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))) → ∃𝑦 ∈ ℝ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦))
95, 8mpd 15 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)
101nnrpd 12073 . . . . . . . 8 (𝜑𝑅 ∈ ℝ+)
1110adantr 466 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑅 ∈ ℝ+)
1211relogcld 24590 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (log‘𝑅) ∈ ℝ)
13 pire 24431 . . . . . . 7 π ∈ ℝ
1413a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → π ∈ ℝ)
1512, 14readdcld 10275 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((log‘𝑅) + π) ∈ ℝ)
16 simpr 471 . . . . 5 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1715, 16readdcld 10275 . . . 4 ((𝜑𝑦 ∈ ℝ) → (((log‘𝑅) + π) + 𝑦) ∈ ℝ)
1817adantrr 696 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)) → (((log‘𝑅) + π) + 𝑦) ∈ ℝ)
194simpld 482 . . . . . . . . . . 11 (𝜑 → ∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ)
2019adantr 466 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → ∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ)
2120r19.21bi 3081 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log Γ‘𝑧) ∈ ℂ)
2221abscld 14383 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log Γ‘𝑧)) ∈ ℝ)
2322adantr 466 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘(log Γ‘𝑧)) ∈ ℝ)
2411adantr 466 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 𝑅 ∈ ℝ+)
2524relogcld 24590 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘𝑅) ∈ ℝ)
2613a1i 11 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → π ∈ ℝ)
2725, 26readdcld 10275 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((log‘𝑅) + π) ∈ ℝ)
281, 2lgamgulmlem1 24976 . . . . . . . . . . . . . . 15 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
2928adantr 466 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
3029sselda 3752 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
3130eldifad 3735 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 𝑧 ∈ ℂ)
3230dmgmn0 24973 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 𝑧 ≠ 0)
3331, 32logcld 24538 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘𝑧) ∈ ℂ)
3421, 33addcld 10265 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((log Γ‘𝑧) + (log‘𝑧)) ∈ ℂ)
3534abscld 14383 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘((log Γ‘𝑧) + (log‘𝑧))) ∈ ℝ)
3627, 35readdcld 10275 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ∈ ℝ)
3736adantr 466 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ∈ ℝ)
3817ad2antrr 705 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (((log‘𝑅) + π) + 𝑦) ∈ ℝ)
3933abscld 14383 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘𝑧)) ∈ ℝ)
4039, 35readdcld 10275 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘𝑧)) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ∈ ℝ)
4133negcld 10585 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → -(log‘𝑧) ∈ ℂ)
4221, 41abs2difd 14404 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log Γ‘𝑧)) − (abs‘-(log‘𝑧))) ≤ (abs‘((log Γ‘𝑧) − -(log‘𝑧))))
4333absnegd 14396 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘-(log‘𝑧)) = (abs‘(log‘𝑧)))
4443oveq2d 6812 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log Γ‘𝑧)) − (abs‘-(log‘𝑧))) = ((abs‘(log Γ‘𝑧)) − (abs‘(log‘𝑧))))
4521, 33subnegd 10605 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((log Γ‘𝑧) − -(log‘𝑧)) = ((log Γ‘𝑧) + (log‘𝑧)))
4645fveq2d 6337 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘((log Γ‘𝑧) − -(log‘𝑧))) = (abs‘((log Γ‘𝑧) + (log‘𝑧))))
4742, 44, 463brtr3d 4818 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log Γ‘𝑧)) − (abs‘(log‘𝑧))) ≤ (abs‘((log Γ‘𝑧) + (log‘𝑧))))
4822, 39, 35lesubadd2d 10832 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (((abs‘(log Γ‘𝑧)) − (abs‘(log‘𝑧))) ≤ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ↔ (abs‘(log Γ‘𝑧)) ≤ ((abs‘(log‘𝑧)) + (abs‘((log Γ‘𝑧) + (log‘𝑧))))))
4947, 48mpbid 222 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log Γ‘𝑧)) ≤ ((abs‘(log‘𝑧)) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))))
5031, 32absrpcld 14395 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘𝑧) ∈ ℝ+)
5150relogcld 24590 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(abs‘𝑧)) ∈ ℝ)
5251recnd 10274 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(abs‘𝑧)) ∈ ℂ)
5352abscld 14383 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘(abs‘𝑧))) ∈ ℝ)
5453, 26readdcld 10275 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘(abs‘𝑧))) + π) ∈ ℝ)
55 abslogle 24585 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) → (abs‘(log‘𝑧)) ≤ ((abs‘(log‘(abs‘𝑧))) + π))
5631, 32, 55syl2anc 573 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘𝑧)) ≤ ((abs‘(log‘(abs‘𝑧))) + π))
57 1rp 12039 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
58 relogdiv 24560 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ+𝑅 ∈ ℝ+) → (log‘(1 / 𝑅)) = ((log‘1) − (log‘𝑅)))
5957, 24, 58sylancr 575 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(1 / 𝑅)) = ((log‘1) − (log‘𝑅)))
60 df-neg 10475 . . . . . . . . . . . . . . . 16 -(log‘𝑅) = (0 − (log‘𝑅))
61 log1 24553 . . . . . . . . . . . . . . . . 17 (log‘1) = 0
6261oveq1i 6806 . . . . . . . . . . . . . . . 16 ((log‘1) − (log‘𝑅)) = (0 − (log‘𝑅))
6360, 62eqtr4i 2796 . . . . . . . . . . . . . . 15 -(log‘𝑅) = ((log‘1) − (log‘𝑅))
6459, 63syl6reqr 2824 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → -(log‘𝑅) = (log‘(1 / 𝑅)))
65 oveq2 6804 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 0 → (𝑧 + 𝑘) = (𝑧 + 0))
6665fveq2d 6337 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (abs‘(𝑧 + 𝑘)) = (abs‘(𝑧 + 0)))
6766breq2d 4799 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → ((1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑧 + 0))))
68 fveq2 6333 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (abs‘𝑥) = (abs‘𝑧))
6968breq1d 4797 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝑧) ≤ 𝑅))
70 fvoveq1 6819 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑧 + 𝑘)))
7170breq2d 4799 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘))))
7271ralbidv 3135 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘))))
7369, 72anbi12d 616 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑧) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)))))
7473, 2elrab2 3518 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑈 ↔ (𝑧 ∈ ℂ ∧ ((abs‘𝑧) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)))))
7574simprbi 484 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑈 → ((abs‘𝑧) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘))))
7675adantl 467 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘𝑧) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘))))
7776simprd 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)))
78 0nn0 11514 . . . . . . . . . . . . . . . . . 18 0 ∈ ℕ0
7978a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 0 ∈ ℕ0)
8067, 77, 79rspcdva 3466 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (1 / 𝑅) ≤ (abs‘(𝑧 + 0)))
8131addid1d 10442 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (𝑧 + 0) = 𝑧)
8281fveq2d 6337 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(𝑧 + 0)) = (abs‘𝑧))
8380, 82breqtrd 4813 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (1 / 𝑅) ≤ (abs‘𝑧))
8424rpreccld 12085 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (1 / 𝑅) ∈ ℝ+)
8584, 50logled 24594 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((1 / 𝑅) ≤ (abs‘𝑧) ↔ (log‘(1 / 𝑅)) ≤ (log‘(abs‘𝑧))))
8683, 85mpbid 222 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(1 / 𝑅)) ≤ (log‘(abs‘𝑧)))
8764, 86eqbrtrd 4809 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → -(log‘𝑅) ≤ (log‘(abs‘𝑧)))
8876simpld 482 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘𝑧) ≤ 𝑅)
8950, 24logled 24594 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘𝑧) ≤ 𝑅 ↔ (log‘(abs‘𝑧)) ≤ (log‘𝑅)))
9088, 89mpbid 222 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(abs‘𝑧)) ≤ (log‘𝑅))
9151, 25absled 14377 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘(abs‘𝑧))) ≤ (log‘𝑅) ↔ (-(log‘𝑅) ≤ (log‘(abs‘𝑧)) ∧ (log‘(abs‘𝑧)) ≤ (log‘𝑅))))
9287, 90, 91mpbir2and 692 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘(abs‘𝑧))) ≤ (log‘𝑅))
9353, 25, 26, 92leadd1dd 10847 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘(abs‘𝑧))) + π) ≤ ((log‘𝑅) + π))
9439, 54, 27, 56, 93letrd 10400 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘𝑧)) ≤ ((log‘𝑅) + π))
9539, 27, 35, 94leadd1dd 10847 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘𝑧)) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ≤ (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))))
9622, 40, 36, 49, 95letrd 10400 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))))
9796adantr 466 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))))
9835adantr 466 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘((log Γ‘𝑧) + (log‘𝑧))) ∈ ℝ)
99 simpllr 760 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → 𝑦 ∈ ℝ)
10027adantr 466 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → ((log‘𝑅) + π) ∈ ℝ)
101 simpr 471 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)
10298, 99, 100, 101leadd2dd 10848 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ≤ (((log‘𝑅) + π) + 𝑦))
10323, 37, 38, 97, 102letrd 10400 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦))
104103ex 397 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦 → (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦)))
105104ralimdva 3111 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦 → ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦)))
106105impr 442 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)) → ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦))
107 breq2 4791 . . . . 5 (𝑟 = (((log‘𝑅) + π) + 𝑦) → ((abs‘(log Γ‘𝑧)) ≤ 𝑟 ↔ (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦)))
108107ralbidv 3135 . . . 4 (𝑟 = (((log‘𝑅) + π) + 𝑦) → (∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦)))
109108rspcev 3460 . . 3 (((((log‘𝑅) + π) + 𝑦) ∈ ℝ ∧ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦)) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟)
11018, 106, 109syl2anc 573 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟)
1119, 110rexlimddv 3183 1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  {crab 3065  cdif 3720  wss 3723  ifcif 4226   class class class wbr 4787  cmpt 4864  dom cdm 5250  cfv 6030  (class class class)co 6796  𝑓 cof 7046  cc 10140  cr 10141  0cc0 10142  1c1 10143   + caddc 10145   · cmul 10147  cle 10281  cmin 10472  -cneg 10473   / cdiv 10890  cn 11226  2c2 11276  0cn0 11499  cz 11584  +crp 12035  seqcseq 13008  cexp 13067  abscabs 14182  πcpi 15003  𝑢culm 24350  logclog 24522  log Γclgam 24963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-tan 15008  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-cmp 21411  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-ulm 24351  df-log 24524  df-cxp 24525  df-lgam 24966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator