MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfuhgr1v0e Structured version   Visualization version   GIF version

Theorem lfuhgr1v0e 26341
Description: A loop-free hypergraph with one vertex has no edges. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 2-Apr-2021.)
Hypotheses
Ref Expression
lfuhgr1v0e.v 𝑉 = (Vtx‘𝐺)
lfuhgr1v0e.i 𝐼 = (iEdg‘𝐺)
lfuhgr1v0e.e 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
Assertion
Ref Expression
lfuhgr1v0e ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (Edg‘𝐺) = ∅)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝐸(𝑥)   𝐼(𝑥)

Proof of Theorem lfuhgr1v0e
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lfuhgr1v0e.i . . . . . 6 𝐼 = (iEdg‘𝐺)
21a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → 𝐼 = (iEdg‘𝐺))
31dmeqi 5476 . . . . . 6 dom 𝐼 = dom (iEdg‘𝐺)
43a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → dom 𝐼 = dom (iEdg‘𝐺))
5 lfuhgr1v0e.e . . . . . 6 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
6 lfuhgr1v0e.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
7 fvex 6358 . . . . . . . . . 10 (Vtx‘𝐺) ∈ V
86, 7eqeltri 2831 . . . . . . . . 9 𝑉 ∈ V
9 hash1snb 13395 . . . . . . . . 9 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
108, 9ax-mp 5 . . . . . . . 8 ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣})
11 pweq 4301 . . . . . . . . . . . 12 (𝑉 = {𝑣} → 𝒫 𝑉 = 𝒫 {𝑣})
1211rabeqdv 3330 . . . . . . . . . . 11 (𝑉 = {𝑣} → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (♯‘𝑥)})
13 2pos 11300 . . . . . . . . . . . . . . 15 0 < 2
14 0re 10228 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
15 2re 11278 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
1614, 15ltnlei 10346 . . . . . . . . . . . . . . 15 (0 < 2 ↔ ¬ 2 ≤ 0)
1713, 16mpbi 220 . . . . . . . . . . . . . 14 ¬ 2 ≤ 0
18 1lt2 11382 . . . . . . . . . . . . . . 15 1 < 2
19 1re 10227 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
2019, 15ltnlei 10346 . . . . . . . . . . . . . . 15 (1 < 2 ↔ ¬ 2 ≤ 1)
2118, 20mpbi 220 . . . . . . . . . . . . . 14 ¬ 2 ≤ 1
22 0ex 4938 . . . . . . . . . . . . . . 15 ∅ ∈ V
23 snex 5053 . . . . . . . . . . . . . . 15 {𝑣} ∈ V
24 fveq2 6348 . . . . . . . . . . . . . . . . . 18 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
25 hash0 13346 . . . . . . . . . . . . . . . . . 18 (♯‘∅) = 0
2624, 25syl6eq 2806 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → (♯‘𝑥) = 0)
2726breq2d 4812 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 0))
2827notbid 307 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (¬ 2 ≤ (♯‘𝑥) ↔ ¬ 2 ≤ 0))
29 fveq2 6348 . . . . . . . . . . . . . . . . . 18 (𝑥 = {𝑣} → (♯‘𝑥) = (♯‘{𝑣}))
30 vex 3339 . . . . . . . . . . . . . . . . . . 19 𝑣 ∈ V
31 hashsng 13347 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ V → (♯‘{𝑣}) = 1)
3230, 31ax-mp 5 . . . . . . . . . . . . . . . . . 18 (♯‘{𝑣}) = 1
3329, 32syl6eq 2806 . . . . . . . . . . . . . . . . 17 (𝑥 = {𝑣} → (♯‘𝑥) = 1)
3433breq2d 4812 . . . . . . . . . . . . . . . 16 (𝑥 = {𝑣} → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 1))
3534notbid 307 . . . . . . . . . . . . . . 15 (𝑥 = {𝑣} → (¬ 2 ≤ (♯‘𝑥) ↔ ¬ 2 ≤ 1))
3622, 23, 28, 35ralpr 4378 . . . . . . . . . . . . . 14 (∀𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (♯‘𝑥) ↔ (¬ 2 ≤ 0 ∧ ¬ 2 ≤ 1))
3717, 21, 36mpbir2an 993 . . . . . . . . . . . . 13 𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (♯‘𝑥)
38 pwsn 4576 . . . . . . . . . . . . . 14 𝒫 {𝑣} = {∅, {𝑣}}
3938raleqi 3277 . . . . . . . . . . . . 13 (∀𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (♯‘𝑥) ↔ ∀𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (♯‘𝑥))
4037, 39mpbir 221 . . . . . . . . . . . 12 𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (♯‘𝑥)
41 rabeq0 4096 . . . . . . . . . . . 12 ({𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (♯‘𝑥)} = ∅ ↔ ∀𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (♯‘𝑥))
4240, 41mpbir 221 . . . . . . . . . . 11 {𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (♯‘𝑥)} = ∅
4312, 42syl6eq 2806 . . . . . . . . . 10 (𝑉 = {𝑣} → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅)
4443a1d 25 . . . . . . . . 9 (𝑉 = {𝑣} → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅))
4544exlimiv 2003 . . . . . . . 8 (∃𝑣 𝑉 = {𝑣} → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅))
4610, 45sylbi 207 . . . . . . 7 ((♯‘𝑉) = 1 → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅))
4746impcom 445 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅)
485, 47syl5eq 2802 . . . . 5 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → 𝐸 = ∅)
492, 4, 48feq123d 6191 . . . 4 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → (𝐼:dom 𝐼𝐸 ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅))
5049biimp3a 1577 . . 3 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅)
51 f00 6244 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ ↔ ((iEdg‘𝐺) = ∅ ∧ dom (iEdg‘𝐺) = ∅))
5251simplbi 478 . . 3 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ → (iEdg‘𝐺) = ∅)
5350, 52syl 17 . 2 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (iEdg‘𝐺) = ∅)
54 uhgriedg0edg0 26217 . . 3 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
55543ad2ant1 1128 . 2 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
5653, 55mpbird 247 1 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (Edg‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1628  wex 1849  wcel 2135  wral 3046  {crab 3050  Vcvv 3336  c0 4054  𝒫 cpw 4298  {csn 4317  {cpr 4319   class class class wbr 4800  dom cdm 5262  wf 6041  cfv 6045  0cc0 10124  1c1 10125   < clt 10262  cle 10263  2c2 11258  chash 13307  Vtxcvtx 26069  iEdgciedg 26070  Edgcedg 26134  UHGraphcuhgr 26146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-card 8951  df-cda 9178  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-nn 11209  df-2 11267  df-n0 11481  df-z 11566  df-uz 11876  df-fz 12516  df-hash 13308  df-edg 26135  df-uhgr 26148
This theorem is referenced by:  usgr1vr  26342  vtxdlfuhgr1v  26581
  Copyright terms: Public domain W3C validator