![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflcl | Structured version Visualization version GIF version |
Description: A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014.) |
Ref | Expression |
---|---|
lflf.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lflf.k | ⊢ 𝐾 = (Base‘𝐷) |
lflf.v | ⊢ 𝑉 = (Base‘𝑊) |
lflf.f | ⊢ 𝐹 = (LFnl‘𝑊) |
Ref | Expression |
---|---|
lflcl | ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lflf.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
2 | lflf.k | . . . 4 ⊢ 𝐾 = (Base‘𝐷) | |
3 | lflf.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lflf.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | 1, 2, 3, 4 | lflf 34872 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
6 | 5 | 3adant3 1126 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → 𝐺:𝑉⟶𝐾) |
7 | simp3 1132 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
8 | 6, 7 | ffvelrnd 6503 | 1 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ⟶wf 6027 ‘cfv 6031 Basecbs 16064 Scalarcsca 16152 LFnlclfn 34866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-map 8011 df-lfl 34867 |
This theorem is referenced by: lfl0 34874 lfladd 34875 lflsub 34876 lflmul 34877 lfl1 34879 lfladdcl 34880 lflnegcl 34884 lflvscl 34886 lkrsc 34906 eqlkr 34908 eqlkr3 34910 lkrlsp 34911 ldualvsubval 34966 dochkr1 37288 dochkr1OLDN 37289 lcfl7lem 37309 lclkrlem2m 37329 lclkrlem2o 37331 lclkrlem2p 37332 lcfrlem1 37352 lcfrlem2 37353 lcfrlem3 37354 lcfrlem29 37381 lcfrlem31 37383 lcfrlem33 37385 lcdvbasecl 37406 |
Copyright terms: Public domain | W3C validator |