![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lfgrn1cycl | Structured version Visualization version GIF version |
Description: In a loop-free graph there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 2-Feb-2021.) |
Ref | Expression |
---|---|
lfgrn1cycl.v | ⊢ 𝑉 = (Vtx‘𝐺) |
lfgrn1cycl.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
lfgrn1cycl | ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≠ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cyclprop 26924 | . . 3 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
2 | cycliswlk 26929 | . . 3 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
3 | lfgrn1cycl.i | . . . . . . . 8 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | lfgrn1cycl.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 3, 4 | lfgrwlknloop 26821 | . . . . . . 7 ⊢ ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
6 | 1nn 11237 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℕ | |
7 | eleq1 2838 | . . . . . . . . . . . . . 14 ⊢ ((♯‘𝐹) = 1 → ((♯‘𝐹) ∈ ℕ ↔ 1 ∈ ℕ)) | |
8 | 6, 7 | mpbiri 248 | . . . . . . . . . . . . 13 ⊢ ((♯‘𝐹) = 1 → (♯‘𝐹) ∈ ℕ) |
9 | lbfzo0 12716 | . . . . . . . . . . . . 13 ⊢ (0 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ ℕ) | |
10 | 8, 9 | sylibr 224 | . . . . . . . . . . . 12 ⊢ ((♯‘𝐹) = 1 → 0 ∈ (0..^(♯‘𝐹))) |
11 | fveq2 6333 | . . . . . . . . . . . . . 14 ⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) | |
12 | fv0p1e1 11339 | . . . . . . . . . . . . . 14 ⊢ (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1)) | |
13 | 11, 12 | neeq12d 3004 | . . . . . . . . . . . . 13 ⊢ (𝑘 = 0 → ((𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
14 | 13 | rspcv 3456 | . . . . . . . . . . . 12 ⊢ (0 ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃‘0) ≠ (𝑃‘1))) |
15 | 10, 14 | syl 17 | . . . . . . . . . . 11 ⊢ ((♯‘𝐹) = 1 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃‘0) ≠ (𝑃‘1))) |
16 | 15 | impcom 394 | . . . . . . . . . 10 ⊢ ((∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (♯‘𝐹) = 1) → (𝑃‘0) ≠ (𝑃‘1)) |
17 | fveq2 6333 | . . . . . . . . . . . 12 ⊢ ((♯‘𝐹) = 1 → (𝑃‘(♯‘𝐹)) = (𝑃‘1)) | |
18 | 17 | neeq2d 3003 | . . . . . . . . . . 11 ⊢ ((♯‘𝐹) = 1 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
19 | 18 | adantl 467 | . . . . . . . . . 10 ⊢ ((∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (♯‘𝐹) = 1) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
20 | 16, 19 | mpbird 247 | . . . . . . . . 9 ⊢ ((∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (♯‘𝐹) = 1) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) |
21 | 20 | ex 397 | . . . . . . . 8 ⊢ (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) → ((♯‘𝐹) = 1 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
22 | 21 | necon2d 2966 | . . . . . . 7 ⊢ (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 1)) |
23 | 5, 22 | syl 17 | . . . . . 6 ⊢ ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 1)) |
24 | 23 | ex 397 | . . . . 5 ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 1))) |
25 | 24 | com13 88 | . . . 4 ⊢ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (♯‘𝐹) ≠ 1))) |
26 | 25 | adantl 467 | . . 3 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (♯‘𝐹) ≠ 1))) |
27 | 1, 2, 26 | sylc 65 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (♯‘𝐹) ≠ 1)) |
28 | 27 | com12 32 | 1 ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≠ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 {crab 3065 𝒫 cpw 4298 class class class wbr 4787 dom cdm 5250 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 0cc0 10142 1c1 10143 + caddc 10145 ≤ cle 10281 ℕcn 11226 2c2 11276 ..^cfzo 12673 ♯chash 13321 Vtxcvtx 26095 iEdgciedg 26096 Walkscwlks 26727 Pathscpths 26843 Cyclesccycls 26916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-ifp 1050 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-er 7900 df-map 8015 df-pm 8016 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8969 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 df-wlks 26730 df-trls 26824 df-pths 26847 df-cycls 26918 |
This theorem is referenced by: umgrn1cycl 26935 |
Copyright terms: Public domain | W3C validator |