![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > letr | Structured version Visualization version GIF version |
Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
Ref | Expression |
---|---|
letr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leloe 10162 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) | |
2 | 1 | 3adant1 1099 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
3 | 2 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
4 | lelttr 10166 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
5 | ltle 10164 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) | |
6 | 5 | 3adant2 1100 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) |
7 | 4, 6 | syld 47 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 ≤ 𝐶)) |
8 | 7 | expdimp 452 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 < 𝐶 → 𝐴 ≤ 𝐶)) |
9 | breq2 4689 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴 ≤ 𝐵 ↔ 𝐴 ≤ 𝐶)) | |
10 | 9 | biimpcd 239 | . . . . 5 ⊢ (𝐴 ≤ 𝐵 → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
11 | 10 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
12 | 8, 11 | jaod 394 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → ((𝐵 < 𝐶 ∨ 𝐵 = 𝐶) → 𝐴 ≤ 𝐶)) |
13 | 3, 12 | sylbid 230 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶)) |
14 | 13 | expimpd 628 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 ℝcr 9973 < clt 10112 ≤ cle 10113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-pre-lttri 10048 ax-pre-lttrn 10049 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 |
This theorem is referenced by: letri 10204 letrd 10232 le2add 10548 le2sub 10565 p1le 10904 lemul12b 10918 lemul12a 10919 zletr 11459 peano2uz2 11503 ledivge1le 11939 lemaxle 12064 elfz1b 12447 elfz0fzfz0 12483 fz0fzelfz0 12484 fz0fzdiffz0 12487 elfzmlbp 12489 difelfznle 12492 elincfzoext 12565 ssfzoulel 12602 ssfzo12bi 12603 flge 12646 flflp1 12648 fldiv4p1lem1div2 12676 fldiv4lem1div2uz2 12677 monoord 12871 leexp2r 12958 expubnd 12961 le2sq2 12979 facwordi 13116 faclbnd3 13119 facavg 13128 fi1uzind 13317 swrdswrdlem 13505 swrdccat 13539 sqrlem1 14027 sqrlem6 14032 sqrlem7 14033 leabs 14083 limsupbnd2 14258 rlim3 14273 lo1bdd2 14299 lo1bddrp 14300 o1lo1 14312 lo1mul 14402 lo1le 14426 isercolllem2 14440 iseraltlem2 14457 fsumabs 14577 cvgrat 14659 ruclem9 15011 algcvga 15339 prmdvdsfz 15464 prmfac1 15478 eulerthlem2 15534 modprm0 15557 prmreclem1 15667 prmreclem4 15670 4sqlem11 15706 vdwnnlem3 15748 gsumbagdiaglem 19423 zntoslem 19953 cnllycmp 22802 evth 22805 ovoliunlem2 23317 ovolicc2lem3 23333 itg2monolem1 23562 coeaddlem 24050 coemullem 24051 aalioulem5 24136 aalioulem6 24137 sincosq1lem 24294 emcllem6 24772 ftalem3 24846 fsumvma2 24984 chpchtsum 24989 bcmono 25047 bposlem5 25058 gausslemma2dlem1a 25135 lgsquadlem1 25150 dchrisum0lem1 25250 pntrsumbnd2 25301 pntleml 25345 brbtwn2 25830 axlowdimlem17 25883 axlowdim 25886 crctcshwlkn0lem3 26760 crctcshwlkn0lem5 26762 wwlksubclwwlk 27023 clwlksfclwwlk 27049 eupth2lems 27216 nmoub3i 27756 ubthlem1 27854 ubthlem2 27855 nmopub2tALT 28896 nmfnleub2 28913 lnconi 29020 leoptr 29124 pjnmopi 29135 cdj3lem2b 29424 eulerpartlemb 30558 isbasisrelowllem1 33333 isbasisrelowllem2 33334 ltflcei 33527 itg2addnclem2 33592 itg2addnclem3 33593 itg2addnc 33594 bddiblnc 33610 dvasin 33626 incsequz 33674 mettrifi 33683 equivbnd 33719 bfplem1 33751 jm2.17b 37845 fmul01lt1lem2 40135 eluzge0nn0 41647 elfz2z 41650 iccpartiltu 41683 iccpartgt 41688 lighneallem2 41848 |
Copyright terms: Public domain | W3C validator |