![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lern | Structured version Visualization version GIF version |
Description: The range of ≤ is ℝ*. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
lern | ⊢ ℝ* = ran ≤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrleid 12176 | . . . 4 ⊢ (𝑥 ∈ ℝ* → 𝑥 ≤ 𝑥) | |
2 | lerel 10294 | . . . . 5 ⊢ Rel ≤ | |
3 | 2 | relelrni 5518 | . . . 4 ⊢ (𝑥 ≤ 𝑥 → 𝑥 ∈ ran ≤ ) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑥 ∈ ℝ* → 𝑥 ∈ ran ≤ ) |
5 | 4 | ssriv 3748 | . 2 ⊢ ℝ* ⊆ ran ≤ |
6 | lerelxr 10293 | . . . 4 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
7 | rnss 5509 | . . . 4 ⊢ ( ≤ ⊆ (ℝ* × ℝ*) → ran ≤ ⊆ ran (ℝ* × ℝ*)) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ran ≤ ⊆ ran (ℝ* × ℝ*) |
9 | rnxpss 5724 | . . 3 ⊢ ran (ℝ* × ℝ*) ⊆ ℝ* | |
10 | 8, 9 | sstri 3753 | . 2 ⊢ ran ≤ ⊆ ℝ* |
11 | 5, 10 | eqssi 3760 | 1 ⊢ ℝ* = ran ≤ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 class class class wbr 4804 × cxp 5264 ran crn 5267 ℝ*cxr 10265 ≤ cle 10267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-pre-lttri 10202 ax-pre-lttrn 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 |
This theorem is referenced by: lefld 17427 cnvordtrestixx 30268 xrge0iifhmeo 30291 |
Copyright terms: Public domain | W3C validator |