![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lerel | Structured version Visualization version GIF version |
Description: 'Less or equal to' is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
lerel | ⊢ Rel ≤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lerelxr 10314 | . 2 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
2 | relxp 5284 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
3 | relss 5364 | . 2 ⊢ ( ≤ ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel ≤ )) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel ≤ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3716 × cxp 5265 Rel wrel 5272 ℝ*cxr 10286 ≤ cle 10288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-v 3343 df-dif 3719 df-in 3723 df-ss 3730 df-opab 4866 df-xp 5273 df-rel 5274 df-le 10293 |
This theorem is referenced by: dfle2 12194 dflt2 12195 ledm 17446 lern 17447 lefld 17448 letsr 17449 dvle 23990 gtiso 29809 |
Copyright terms: Public domain | W3C validator |