MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtvallem1 Structured version   Visualization version   GIF version

Theorem leordtvallem1 21208
Description: Lemma for leordtval 21211. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
Assertion
Ref Expression
leordtvallem1 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem leordtvallem1
StepHypRef Expression
1 leordtval.1 . 2 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 iocssxr 12442 . . . . . 6 (𝑥(,]+∞) ⊆ ℝ*
3 sseqin2 3952 . . . . . 6 ((𝑥(,]+∞) ⊆ ℝ* ↔ (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞))
42, 3mpbi 220 . . . . 5 (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞)
5 simpl 474 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
6 pnfxr 10276 . . . . . . . 8 +∞ ∈ ℝ*
7 elioc1 12402 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞)))
85, 6, 7sylancl 697 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞)))
9 simpr 479 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
10 pnfge 12149 . . . . . . . . . 10 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
119, 10jccir 563 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ*𝑦 ≤ +∞))
1211biantrurd 530 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ((𝑦 ∈ ℝ*𝑦 ≤ +∞) ∧ 𝑥 < 𝑦)))
13 3anan32 1083 . . . . . . . 8 ((𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞) ↔ ((𝑦 ∈ ℝ*𝑦 ≤ +∞) ∧ 𝑥 < 𝑦))
1412, 13syl6bbr 278 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑦 ∈ ℝ*𝑥 < 𝑦𝑦 ≤ +∞)))
15 xrltnle 10289 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
168, 14, 153bitr2d 296 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ ¬ 𝑦𝑥))
1716rabbi2dva 3956 . . . . 5 (𝑥 ∈ ℝ* → (ℝ* ∩ (𝑥(,]+∞)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
184, 17syl5eqr 2800 . . . 4 (𝑥 ∈ ℝ* → (𝑥(,]+∞) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
1918mpteq2ia 4884 . . 3 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
2019rneqi 5499 . 2 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
211, 20eqtri 2774 1 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 383  w3a 1072   = wceq 1624  wcel 2131  {crab 3046  cin 3706  wss 3707   class class class wbr 4796  cmpt 4873  ran crn 5259  (class class class)co 6805  +∞cpnf 10255  *cxr 10257   < clt 10258  cle 10259  (,]cioc 12361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-1st 7325  df-2nd 7326  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-ioc 12365
This theorem is referenced by:  leordtval2  21210  leordtval  21211
  Copyright terms: Public domain W3C validator