![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leordtvallem1 | Structured version Visualization version GIF version |
Description: Lemma for leordtval 21211. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
leordtval.1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
Ref | Expression |
---|---|
leordtvallem1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leordtval.1 | . 2 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) | |
2 | iocssxr 12442 | . . . . . 6 ⊢ (𝑥(,]+∞) ⊆ ℝ* | |
3 | sseqin2 3952 | . . . . . 6 ⊢ ((𝑥(,]+∞) ⊆ ℝ* ↔ (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞)) | |
4 | 2, 3 | mpbi 220 | . . . . 5 ⊢ (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞) |
5 | simpl 474 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*) | |
6 | pnfxr 10276 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
7 | elioc1 12402 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞))) | |
8 | 5, 6, 7 | sylancl 697 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞))) |
9 | simpr 479 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*) | |
10 | pnfge 12149 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ* → 𝑦 ≤ +∞) | |
11 | 9, 10 | jccir 563 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞)) |
12 | 11 | biantrurd 530 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ((𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞) ∧ 𝑥 < 𝑦))) |
13 | 3anan32 1083 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞) ↔ ((𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞) ∧ 𝑥 < 𝑦)) | |
14 | 12, 13 | syl6bbr 278 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞))) |
15 | xrltnle 10289 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) | |
16 | 8, 14, 15 | 3bitr2d 296 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ ¬ 𝑦 ≤ 𝑥)) |
17 | 16 | rabbi2dva 3956 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (ℝ* ∩ (𝑥(,]+∞)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
18 | 4, 17 | syl5eqr 2800 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (𝑥(,]+∞) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
19 | 18 | mpteq2ia 4884 | . . 3 ⊢ (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
20 | 19 | rneqi 5499 | . 2 ⊢ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
21 | 1, 20 | eqtri 2774 | 1 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 {crab 3046 ∩ cin 3706 ⊆ wss 3707 class class class wbr 4796 ↦ cmpt 4873 ran crn 5259 (class class class)co 6805 +∞cpnf 10255 ℝ*cxr 10257 < clt 10258 ≤ cle 10259 (,]cioc 12361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-1st 7325 df-2nd 7326 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-ioc 12365 |
This theorem is referenced by: leordtval2 21210 leordtval 21211 |
Copyright terms: Public domain | W3C validator |