![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > leopmuli | Structured version Visualization version GIF version |
Description: The scalar product of a nonnegative real and a positive operator is a positive operator. Exercise 1(ii) of [Retherford] p. 49. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
leopmuli | ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (0 ≤ 𝐴 ∧ 0hop ≤op 𝑇)) → 0hop ≤op (𝐴 ·op 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmopre 29122 | . . . . . . . . . 10 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑥) ∈ ℝ) | |
2 | mulge0 10748 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (((𝑇‘𝑥) ·ih 𝑥) ∈ ℝ ∧ 0 ≤ ((𝑇‘𝑥) ·ih 𝑥))) → 0 ≤ (𝐴 · ((𝑇‘𝑥) ·ih 𝑥))) | |
3 | 1, 2 | sylanr1 661 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) ∧ 0 ≤ ((𝑇‘𝑥) ·ih 𝑥))) → 0 ≤ (𝐴 · ((𝑇‘𝑥) ·ih 𝑥))) |
4 | 3 | expr 444 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ)) → (0 ≤ ((𝑇‘𝑥) ·ih 𝑥) → 0 ≤ (𝐴 · ((𝑇‘𝑥) ·ih 𝑥)))) |
5 | 4 | an4s 639 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (0 ≤ 𝐴 ∧ 𝑥 ∈ ℋ)) → (0 ≤ ((𝑇‘𝑥) ·ih 𝑥) → 0 ≤ (𝐴 · ((𝑇‘𝑥) ·ih 𝑥)))) |
6 | 5 | anassrs 458 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℋ) → (0 ≤ ((𝑇‘𝑥) ·ih 𝑥) → 0 ≤ (𝐴 · ((𝑇‘𝑥) ·ih 𝑥)))) |
7 | recn 10228 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
8 | hmopf 29073 | . . . . . . . . . 10 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) | |
9 | 7, 8 | anim12i 600 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) |
10 | homval 28940 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 ·ℎ (𝑇‘𝑥))) | |
11 | 10 | 3expa 1111 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 ·ℎ (𝑇‘𝑥))) |
12 | 11 | oveq1d 6808 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥) = ((𝐴 ·ℎ (𝑇‘𝑥)) ·ih 𝑥)) |
13 | simpll 750 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℂ) | |
14 | ffvelrn 6500 | . . . . . . . . . . . 12 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) | |
15 | 14 | adantll 693 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) |
16 | simpr 471 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ) | |
17 | ax-his3 28281 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·ℎ (𝑇‘𝑥)) ·ih 𝑥) = (𝐴 · ((𝑇‘𝑥) ·ih 𝑥))) | |
18 | 13, 15, 16, 17 | syl3anc 1476 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·ℎ (𝑇‘𝑥)) ·ih 𝑥) = (𝐴 · ((𝑇‘𝑥) ·ih 𝑥))) |
19 | 12, 18 | eqtrd 2805 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥) = (𝐴 · ((𝑇‘𝑥) ·ih 𝑥))) |
20 | 9, 19 | sylan 569 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥) = (𝐴 · ((𝑇‘𝑥) ·ih 𝑥))) |
21 | 20 | breq2d 4798 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → (0 ≤ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (𝐴 · ((𝑇‘𝑥) ·ih 𝑥)))) |
22 | 21 | adantlr 694 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℋ) → (0 ≤ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (𝐴 · ((𝑇‘𝑥) ·ih 𝑥)))) |
23 | 6, 22 | sylibrd 249 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℋ) → (0 ≤ ((𝑇‘𝑥) ·ih 𝑥) → 0 ≤ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥))) |
24 | 23 | ralimdva 3111 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ 0 ≤ 𝐴) → (∀𝑥 ∈ ℋ 0 ≤ ((𝑇‘𝑥) ·ih 𝑥) → ∀𝑥 ∈ ℋ 0 ≤ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥))) |
25 | 24 | expimpd 441 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → ((0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℋ 0 ≤ ((𝑇‘𝑥) ·ih 𝑥)) → ∀𝑥 ∈ ℋ 0 ≤ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥))) |
26 | leoppos 29325 | . . . . 5 ⊢ (𝑇 ∈ HrmOp → ( 0hop ≤op 𝑇 ↔ ∀𝑥 ∈ ℋ 0 ≤ ((𝑇‘𝑥) ·ih 𝑥))) | |
27 | 26 | adantl 467 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → ( 0hop ≤op 𝑇 ↔ ∀𝑥 ∈ ℋ 0 ≤ ((𝑇‘𝑥) ·ih 𝑥))) |
28 | 27 | anbi2d 614 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → ((0 ≤ 𝐴 ∧ 0hop ≤op 𝑇) ↔ (0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℋ 0 ≤ ((𝑇‘𝑥) ·ih 𝑥)))) |
29 | hmopm 29220 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp) | |
30 | leoppos 29325 | . . . 4 ⊢ ((𝐴 ·op 𝑇) ∈ HrmOp → ( 0hop ≤op (𝐴 ·op 𝑇) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥))) | |
31 | 29, 30 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → ( 0hop ≤op (𝐴 ·op 𝑇) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥))) |
32 | 25, 28, 31 | 3imtr4d 283 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → ((0 ≤ 𝐴 ∧ 0hop ≤op 𝑇) → 0hop ≤op (𝐴 ·op 𝑇))) |
33 | 32 | imp 393 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (0 ≤ 𝐴 ∧ 0hop ≤op 𝑇)) → 0hop ≤op (𝐴 ·op 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 class class class wbr 4786 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 ℝcr 10137 0cc0 10138 · cmul 10143 ≤ cle 10277 ℋchil 28116 ·ℎ csm 28118 ·ih csp 28119 ·op chot 28136 0hop ch0o 28140 HrmOpcho 28147 ≤op cleo 28155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cc 9459 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 ax-addf 10217 ax-mulf 10218 ax-hilex 28196 ax-hfvadd 28197 ax-hvcom 28198 ax-hvass 28199 ax-hv0cl 28200 ax-hvaddid 28201 ax-hfvmul 28202 ax-hvmulid 28203 ax-hvmulass 28204 ax-hvdistr1 28205 ax-hvdistr2 28206 ax-hvmul0 28207 ax-hfi 28276 ax-his1 28279 ax-his2 28280 ax-his3 28281 ax-his4 28282 ax-hcompl 28399 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-omul 7718 df-er 7896 df-map 8011 df-pm 8012 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-fi 8473 df-sup 8504 df-inf 8505 df-oi 8571 df-card 8965 df-acn 8968 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-q 11992 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-fl 12801 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-rlim 14428 df-sum 14625 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-fbas 19958 df-fg 19959 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-nei 21123 df-cn 21252 df-cnp 21253 df-lm 21254 df-haus 21340 df-tx 21586 df-hmeo 21779 df-fil 21870 df-fm 21962 df-flim 21963 df-flf 21964 df-xms 22345 df-ms 22346 df-tms 22347 df-cfil 23272 df-cau 23273 df-cmet 23274 df-grpo 27687 df-gid 27688 df-ginv 27689 df-gdiv 27690 df-ablo 27739 df-vc 27754 df-nv 27787 df-va 27790 df-ba 27791 df-sm 27792 df-0v 27793 df-vs 27794 df-nmcv 27795 df-ims 27796 df-dip 27896 df-ssp 27917 df-ph 28008 df-cbn 28059 df-hnorm 28165 df-hba 28166 df-hvsub 28168 df-hlim 28169 df-hcau 28170 df-sh 28404 df-ch 28418 df-oc 28449 df-ch0 28450 df-shs 28507 df-pjh 28594 df-hosum 28929 df-homul 28930 df-hodif 28931 df-h0op 28947 df-hmop 29043 df-leop 29051 |
This theorem is referenced by: leopmul 29333 leopmul2i 29334 opsqrlem1 29339 |
Copyright terms: Public domain | W3C validator |