![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lennncl | Structured version Visualization version GIF version |
Description: The length of a nonempty word is a positive integer. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
lennncl | ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrdfin 13509 | . . 3 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊 ∈ Fin) | |
2 | hashnncl 13349 | . . 3 ⊢ (𝑊 ∈ Fin → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑊 ∈ Word 𝑆 → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅)) |
4 | 3 | biimpar 503 | 1 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 ≠ wne 2932 ∅c0 4058 ‘cfv 6049 Fincfn 8121 ℕcn 11212 ♯chash 13311 Word cword 13477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-fzo 12660 df-hash 13312 df-word 13485 |
This theorem is referenced by: len0nnbi 13527 lswcl 13542 ccatval1lsw 13556 ccatval21sw 13557 lswccatn0lsw 13563 swrdtrcfv 13641 swrdccatwrd 13668 wrdeqs1cat 13674 cshw0 13740 cshwmodn 13741 cshwn 13743 cshwlen 13745 cshwidx0mod 13751 scshwfzeqfzo 13772 lswco 13784 gsumwsubmcl 17576 gsumccat 17579 efgsf 18342 efgsrel 18347 efgs1b 18349 efgredlema 18353 efgredlemd 18357 efgrelexlemb 18363 clwwlkccatlem 27112 clwwlkwwlksb 27184 signsvtn0 30956 signstfvneq0 30958 signsvfn 30968 signsvtp 30969 signsvtn 30970 signsvfpn 30971 signsvfnn 30972 signlem0 30973 pfxtrcfv 41911 pfxsuff1eqwrdeq 41917 pfx1 41921 cshword2 41947 |
Copyright terms: Public domain | W3C validator |