![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leneltd | Structured version Visualization version GIF version |
Description: 'Less than or equal to' and 'not equals' implies 'less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
leltned.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
leneltd.4 | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Ref | Expression |
---|---|
leneltd | ⊢ (𝜑 → 𝐴 < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leneltd.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐴) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | leltned.3 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
5 | 2, 3, 4 | leltned 10396 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴)) |
6 | 1, 5 | mpbird 247 | 1 ⊢ (𝜑 → 𝐴 < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ≠ wne 2943 class class class wbr 4787 ℝcr 10141 < clt 10280 ≤ cle 10281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-resscn 10199 ax-pre-lttri 10216 ax-pre-lttrn 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-po 5171 df-so 5172 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 |
This theorem is referenced by: flltnz 12820 fprodle 14933 unbdqndv2lem2 32838 fzdifsuc2 40038 xralrple2 40083 xralrple3 40103 eliccelioc 40263 limcresiooub 40389 limcresioolb 40390 icccncfext 40615 cncfiooiccre 40623 dvbdfbdioolem2 40659 dvnxpaek 40672 volioc 40702 itgioocnicc 40707 iblcncfioo 40708 dirkercncflem1 40834 fourierdlem24 40862 fourierdlem25 40863 fourierdlem32 40870 fourierdlem33 40871 fourierdlem41 40879 fourierdlem42 40880 fourierdlem46 40883 fourierdlem48 40885 fourierdlem49 40886 fourierdlem51 40888 fourierdlem64 40901 fourierdlem65 40902 fourierdlem73 40910 fourierdlem76 40913 fourierdlem79 40916 fourierdlem81 40918 fourierdlem82 40919 fourierdlem89 40926 fourierdlem91 40928 fourierdlem102 40939 fourierdlem114 40951 fourierswlem 40961 fouriersw 40962 etransclem15 40980 etransclem24 40989 etransclem25 40990 etransclem35 41000 iundjiun 41191 hoidmvlelem2 41327 |
Copyright terms: Public domain | W3C validator |