![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lenegcon1 | Structured version Visualization version GIF version |
Description: Contraposition of negative in 'less than or equal to'. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
lenegcon1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 ≤ 𝐵 ↔ -𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl 10507 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
2 | leneg 10694 | . . 3 ⊢ ((-𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 ≤ 𝐵 ↔ -𝐵 ≤ --𝐴)) | |
3 | 1, 2 | sylan 489 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 ≤ 𝐵 ↔ -𝐵 ≤ --𝐴)) |
4 | recn 10189 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
5 | 4 | negnegd 10546 | . . . 4 ⊢ (𝐴 ∈ ℝ → --𝐴 = 𝐴) |
6 | 5 | breq2d 4804 | . . 3 ⊢ (𝐴 ∈ ℝ → (-𝐵 ≤ --𝐴 ↔ -𝐵 ≤ 𝐴)) |
7 | 6 | adantr 472 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐵 ≤ --𝐴 ↔ -𝐵 ≤ 𝐴)) |
8 | 3, 7 | bitrd 268 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 ≤ 𝐵 ↔ -𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2127 class class class wbr 4792 ℝcr 10098 ≤ cle 10238 -cneg 10430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-po 5175 df-so 5176 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 |
This theorem is referenced by: lenegcon1i 10743 lenegcon1d 10772 fiminre 11135 ublbneg 11937 zmax 11949 absle 14225 lenegsq 14230 abs2difabs 14244 o1lo1 14438 infcvgaux2i 14760 sinbnd 15080 cosbnd 15081 xrhmeo 22917 logcj 24522 asinneg 24783 |
Copyright terms: Public domain | W3C validator |