MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lenegcon1 Structured version   Visualization version   GIF version

Theorem lenegcon1 10695
Description: Contraposition of negative in 'less than or equal to'. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
lenegcon1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴𝐵 ↔ -𝐵𝐴))

Proof of Theorem lenegcon1
StepHypRef Expression
1 renegcl 10507 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2 leneg 10694 . . 3 ((-𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴𝐵 ↔ -𝐵 ≤ --𝐴))
31, 2sylan 489 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴𝐵 ↔ -𝐵 ≤ --𝐴))
4 recn 10189 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
54negnegd 10546 . . . 4 (𝐴 ∈ ℝ → --𝐴 = 𝐴)
65breq2d 4804 . . 3 (𝐴 ∈ ℝ → (-𝐵 ≤ --𝐴 ↔ -𝐵𝐴))
76adantr 472 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐵 ≤ --𝐴 ↔ -𝐵𝐴))
83, 7bitrd 268 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴𝐵 ↔ -𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2127   class class class wbr 4792  cr 10098  cle 10238  -cneg 10430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-po 5175  df-so 5176  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432
This theorem is referenced by:  lenegcon1i  10743  lenegcon1d  10772  fiminre  11135  ublbneg  11937  zmax  11949  absle  14225  lenegsq  14230  abs2difabs  14244  o1lo1  14438  infcvgaux2i  14760  sinbnd  15080  cosbnd  15081  xrhmeo  22917  logcj  24522  asinneg  24783
  Copyright terms: Public domain W3C validator