MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul1a Structured version   Visualization version   GIF version

Theorem lemul1a 10915
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
lemul1a (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))

Proof of Theorem lemul1a
StepHypRef Expression
1 0re 10078 . . . . . . 7 0 ∈ ℝ
2 leloe 10162 . . . . . . 7 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ 𝐶 ↔ (0 < 𝐶 ∨ 0 = 𝐶)))
31, 2mpan 706 . . . . . 6 (𝐶 ∈ ℝ → (0 ≤ 𝐶 ↔ (0 < 𝐶 ∨ 0 = 𝐶)))
43pm5.32i 670 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ↔ (𝐶 ∈ ℝ ∧ (0 < 𝐶 ∨ 0 = 𝐶)))
5 lemul1 10913 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
65biimpd 219 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
763expia 1286 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
87com12 32 . . . . . 6 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
91leidi 10600 . . . . . . . . . 10 0 ≤ 0
10 recn 10064 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1110mul01d 10273 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
12 recn 10064 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
1312mul01d 10273 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 · 0) = 0)
1411, 13breqan12d 4701 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 0) ≤ (𝐵 · 0) ↔ 0 ≤ 0))
159, 14mpbiri 248 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 0) ≤ (𝐵 · 0))
16 oveq2 6698 . . . . . . . . . 10 (0 = 𝐶 → (𝐴 · 0) = (𝐴 · 𝐶))
17 oveq2 6698 . . . . . . . . . 10 (0 = 𝐶 → (𝐵 · 0) = (𝐵 · 𝐶))
1816, 17breq12d 4698 . . . . . . . . 9 (0 = 𝐶 → ((𝐴 · 0) ≤ (𝐵 · 0) ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
1915, 18syl5ib 234 . . . . . . . 8 (0 = 𝐶 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
2019a1dd 50 . . . . . . 7 (0 = 𝐶 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
2120adantl 481 . . . . . 6 ((𝐶 ∈ ℝ ∧ 0 = 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
228, 21jaodan 843 . . . . 5 ((𝐶 ∈ ℝ ∧ (0 < 𝐶 ∨ 0 = 𝐶)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
234, 22sylbi 207 . . . 4 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
2423com12 32 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))))
25243impia 1280 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
2625imp 444 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  (class class class)co 6690  cr 9973  0cc0 9974   · cmul 9979   < clt 10112  cle 10113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307
This theorem is referenced by:  lemul2a  10916  ltmul12a  10917  lemul12b  10918  lt2msq1  10945  lemul1ad  11001  faclbnd4lem1  13120  facavg  13128  mulcn2  14370  o1fsum  14589  eftlub  14883  bddmulibl  23650  cxpaddlelem  24537  dchrmusum2  25228  axcontlem7  25895  nmoub3i  27756  siilem1  27834  ubthlem3  27856  bcs2  28167  cnlnadjlem2  29055  leopnmid  29125  eulerpartlemgc  30552  rrntotbnd  33765  jm2.17a  37844
  Copyright terms: Public domain W3C validator