MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul1 Structured version   Visualization version   GIF version

Theorem lemul1 11067
Description: Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
lemul1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))

Proof of Theorem lemul1
StepHypRef Expression
1 ltmul1 11065 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
2 recn 10218 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 recn 10218 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 recn 10218 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
54adantr 472 . . . . . 6 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ∈ ℂ)
6 gt0ne0 10685 . . . . . 6 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
75, 6jca 555 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
8 mulcan2 10857 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))
92, 3, 7, 8syl3an 1164 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))
109bicomd 213 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 = 𝐵 ↔ (𝐴 · 𝐶) = (𝐵 · 𝐶)))
111, 10orbi12d 748 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 < 𝐵𝐴 = 𝐵) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐴 · 𝐶) = (𝐵 · 𝐶))))
12 leloe 10316 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
13123adant3 1127 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
14 remulcl 10213 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
15143adant2 1126 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
16 remulcl 10213 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
17163adant1 1125 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
1815, 17leloed 10372 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐴 · 𝐶) = (𝐵 · 𝐶))))
19183adant3r 1196 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) ∨ (𝐴 · 𝐶) = (𝐵 · 𝐶))))
2011, 13, 193bitr4d 300 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128   · cmul 10133   < clt 10266  cle 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461
This theorem is referenced by:  lemul2  11068  lemul1a  11069  lediv23  11107  lemul1i  11138  ledivp1i  11141  div4p1lem1div2  11479  lemul1d  12108  xlemul1a  12311  iccdil  12503  expgt1  13092  sqlecan  13165  facubnd  13281  sqrlem2  14183  sqrlem6  14187  eirrlem  15131  mbfi1fseqlem3  23683  mbfi1fseqlem4  23684  mbfi1fseqlem5  23685  itg2monolem3  23718  atans2  24857  log2tlbnd  24871  fsumfldivdiaglem  25114  chtublem  25135  bposlem2  25209  bposlem5  25212  gausslemma2dlem2  25291  2lgslem1a1  25313  selberglem2  25434  pntpbnd1a  25473  pntpbnd2  25475  ostth2lem3  25523  htthlem  28083  cnlnadjlem7  29241  bfplem1  33934  jm2.24nn  38028  jm3.1lem2  38087  stoweidlem14  40734  stoweidlem26  40746  stoweidlem34  40754  fmtno4prmfac  41994
  Copyright terms: Public domain W3C validator