![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lemaxle | Structured version Visualization version GIF version |
Description: A real number which is less than or equal to a second real number is less than or equal to the maximum/supremum of the second real number and a third real number. (Contributed by AV, 8-Jun-2021.) |
Ref | Expression |
---|---|
lemaxle | ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | max2 12182 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) | |
2 | 1 | ancoms 468 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) |
3 | 2 | adantr 472 | . . 3 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐵 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) |
4 | simpr 479 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
5 | simpll 807 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ) | |
6 | ifcl 4262 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → if(𝐶 ≤ 𝐵, 𝐵, 𝐶) ∈ ℝ) | |
7 | 6 | adantr 472 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → if(𝐶 ≤ 𝐵, 𝐵, 𝐶) ∈ ℝ) |
8 | letr 10294 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if(𝐶 ≤ 𝐵, 𝐵, 𝐶) ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶))) | |
9 | 4, 5, 7, 8 | syl3anc 1463 | . . 3 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶))) |
10 | 3, 9 | mpan2d 712 | . 2 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 𝐵 → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶))) |
11 | 10 | 3impia 1109 | 1 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2127 ifcif 4218 class class class wbr 4792 ℝcr 10098 ≤ cle 10238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-pre-lttri 10173 ax-pre-lttrn 10174 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-po 5175 df-so 5176 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 |
This theorem is referenced by: setsstructOLD 16072 |
Copyright terms: Public domain | W3C validator |