MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leloed Structured version   Visualization version   GIF version

Theorem leloed 10381
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
leloed (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))

Proof of Theorem leloed
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 leloe 10325 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
41, 2, 3syl2anc 565 1 (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 826   = wceq 1630  wcel 2144   class class class wbr 4784  cr 10136   < clt 10275  cle 10276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-resscn 10194  ax-pre-lttri 10211
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281
This theorem is referenced by:  mulge0  10747  prodgt0  11069  lemul1  11076  supfirege  11210  nn0le2is012  11642  nn0o1gt2  15304  reconnlem1  22848  reconnlem2  22849  ivthle  23443  ivthle2  23444  ovolicc2lem3  23506  itgsplitioo  23823  dvlip  23975  dvge0  23988  dvfsumlem1  24008  dgrco  24250  plydivex  24271  coseq00topi  24474  logreclem  24720  scvxcvx  24932  pntrlog2bndlem5  25490  dnibndlem13  32811  elpell1qr2  37955  pellfundex  37969  fmul01lt1lem2  40329  wallispilem3  40795  fourierdlem25  40860  fourierdlem42  40877  lighneallem4b  42044  nn0o1gt2ALTV  42123  stgoldbwt  42182  sbgoldbwt  42183  sbgoldbalt  42187  nnsum3primesle9  42200  bgoldbtbndlem1  42211
  Copyright terms: Public domain W3C validator