![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leidi | Structured version Visualization version GIF version |
Description: 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
lt2.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
leidi | ⊢ 𝐴 ≤ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt2.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | leid 10325 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ≤ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 class class class wbr 4804 ℝcr 10127 ≤ cle 10267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-pre-lttri 10202 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 |
This theorem is referenced by: 1le1 10847 elimge0 11052 lemul1a 11069 0le0 11302 dfuzi 11660 fldiv4p1lem1div2 12830 facwordi 13270 sincos2sgn 15123 strle1 16175 cnfldfun 19960 dscmet 22578 tanabsge 24457 logneg 24533 log2ublem2 24873 emcllem6 24926 harmonicbnd3 24933 ppiublem2 25127 chebbnd1lem3 25359 rpvmasumlem 25375 axlowdimlem6 26026 umgrupgr 26197 umgrislfupgr 26217 usgrislfuspgr 26278 usgr2pthlem 26869 konigsberglem4 27407 lmat22e12 30194 lmat22e21 30195 lmat22e22 30196 oddpwdc 30725 tgoldbachgt 31050 bj-pinftynminfty 33425 lhe4.4ex1a 39030 limsup10exlem 40507 fourierdlem112 40938 salexct3 41063 salgensscntex 41065 0ome 41249 wtgoldbnnsum4prm 42200 bgoldbnnsum3prm 42202 |
Copyright terms: Public domain | W3C validator |