MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledm Structured version   Visualization version   GIF version

Theorem ledm 17271
Description: domain of is *. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.)
Assertion
Ref Expression
ledm * = dom ≤

Proof of Theorem ledm
StepHypRef Expression
1 xrleid 12021 . . . 4 (𝑥 ∈ ℝ*𝑥𝑥)
2 lerel 10140 . . . . 5 Rel ≤
32releldmi 5394 . . . 4 (𝑥𝑥𝑥 ∈ dom ≤ )
41, 3syl 17 . . 3 (𝑥 ∈ ℝ*𝑥 ∈ dom ≤ )
54ssriv 3640 . 2 * ⊆ dom ≤
6 lerelxr 10139 . . . 4 ≤ ⊆ (ℝ* × ℝ*)
7 dmss 5355 . . . 4 ( ≤ ⊆ (ℝ* × ℝ*) → dom ≤ ⊆ dom (ℝ* × ℝ*))
86, 7ax-mp 5 . . 3 dom ≤ ⊆ dom (ℝ* × ℝ*)
9 dmxpss 5600 . . 3 dom (ℝ* × ℝ*) ⊆ ℝ*
108, 9sstri 3645 . 2 dom ≤ ⊆ ℝ*
115, 10eqssi 3652 1 * = dom ≤
Colors of variables: wff setvar class
Syntax hints:   = wceq 1523  wcel 2030  wss 3607   class class class wbr 4685   × cxp 5141  dom cdm 5143  *cxr 10111  cle 10113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118
This theorem is referenced by:  lefld  17273  letsr  17274  letopon  21057  leordtval2  21064  leordtval  21065  iccordt  21066  ordtrestixx  21074  icopnfhmeo  22789  iccpnfhmeo  22791  xrhmeo  22792  xrmulc1cn  30104  xrge0iifhmeo  30110
  Copyright terms: Public domain W3C validator