![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ledivmul2d | Structured version Visualization version GIF version |
Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltmul1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltmul1d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltmul1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
Ref | Expression |
---|---|
ledivmul2d | ⊢ (𝜑 → ((𝐴 / 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmul1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltmul1d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ltmul1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
4 | 3 | rpregt0d 12080 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
5 | ledivmul2 11103 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 · 𝐶))) | |
6 | 1, 2, 4, 5 | syl3anc 1475 | 1 ⊢ (𝜑 → ((𝐴 / 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∈ wcel 2144 class class class wbr 4784 (class class class)co 6792 ℝcr 10136 0cc0 10137 · cmul 10142 < clt 10275 ≤ cle 10276 / cdiv 10885 ℝ+crp 12034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-rp 12035 |
This theorem is referenced by: nmoi 22751 nmoleub 22754 nmoleub2lem3 23133 nmoleub3 23137 ulmdvlem1 24373 fsumharmonic 24958 bposlem1 25229 chpo1ubb 25390 chpdifbndlem1 25462 selberg3lem1 25466 pntrlog2bndlem2 25487 pntrlog2bndlem4 25489 pntrlog2bndlem6 25492 pntibndlem2 25500 pntlemo 25516 knoppndvlem18 32851 geomcau 33880 |
Copyright terms: Public domain | W3C validator |