MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv1dd Structured version   Visualization version   GIF version

Theorem lediv1dd 12143
Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
ltmul1d.1 (𝜑𝐴 ∈ ℝ)
ltmul1d.2 (𝜑𝐵 ∈ ℝ)
ltmul1d.3 (𝜑𝐶 ∈ ℝ+)
lediv1dd.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
lediv1dd (𝜑 → (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))

Proof of Theorem lediv1dd
StepHypRef Expression
1 lediv1dd.4 . 2 (𝜑𝐴𝐵)
2 ltmul1d.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltmul1d.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltmul1d.3 . . 3 (𝜑𝐶 ∈ ℝ+)
52, 3, 4lediv1d 12131 . 2 (𝜑 → (𝐴𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)))
61, 5mpbid 222 1 (𝜑 → (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2139   class class class wbr 4804  (class class class)co 6814  cr 10147  cle 10287   / cdiv 10896  +crp 12045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-rp 12046
This theorem is referenced by:  aalioulem5  24310  aalioulem6  24311  cxp2lim  24923  cxploglim2  24925  fsumharmonic  24958  lgamgulmlem2  24976  lgamgulmlem5  24979  chpchtlim  25388  dchrmusum2  25403  dchrvmasumlem3  25408  dchrisum0fno1  25420  dchrisum0lem1  25425  dchrisum0lem2a  25426  mulogsumlem  25440  vmalogdivsum2  25447  2vmadivsumlem  25449  selberglem2  25455  selbergb  25458  selberg2b  25461  chpdifbndlem1  25462  logdivbnd  25465  selberg3lem1  25466  selberg4lem1  25469  pntrlog2bndlem1  25486  pntrlog2bndlem2  25487  pntrlog2bndlem3  25488  pntrlog2bndlem5  25490  pntrlog2bnd  25493  pntpbnd1a  25494  pntpbnd2  25496  pntibndlem2  25500  dya2icoseg  30669  sxbrsigalem2  30678  knoppndvlem14  32843  knoppndvlem17  32846  hashnzfzclim  39041  oddfl  40006  lefldiveq  40022  sumnnodd  40383  wallispilem5  40807  dirkertrigeqlem3  40838  fourierdlem6  40851  fourierdlem7  40852  fourierdlem10  40855  fourierdlem30  40875  fourierdlem39  40884  fourierdlem47  40891  fourierdlem65  40909  fourierdlem79  40923  etransclem23  40995  flnn0div2ge  42855  dignn0flhalflem2  42938
  Copyright terms: Public domain W3C validator