MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem1 Structured version   Visualization version   GIF version

Theorem lebnumlem1 22807
Description: Lemma for lebnum 22810. The function 𝐹 measures the sum of all of the distances to escape the sets of the cover. Since by assumption it is a cover, there is at least one set which covers a given point, and since it is open, the point is a positive distance from the edge of the set. Thus, the sum is a strictly positive number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
lebnumlem1.u (𝜑𝑈 ∈ Fin)
lebnumlem1.n (𝜑 → ¬ 𝑋𝑈)
lebnumlem1.f 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
Assertion
Ref Expression
lebnumlem1 (𝜑𝐹:𝑋⟶ℝ+)
Distinct variable groups:   𝑦,𝑘,𝑧,𝐷   𝑘,𝐽,𝑦,𝑧   𝑈,𝑘,𝑦,𝑧   𝜑,𝑘,𝑦,𝑧   𝑘,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧,𝑘)

Proof of Theorem lebnumlem1
Dummy variables 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lebnumlem1.u . . . . 5 (𝜑𝑈 ∈ Fin)
21adantr 480 . . . 4 ((𝜑𝑦𝑋) → 𝑈 ∈ Fin)
3 lebnum.d . . . . . . . 8 (𝜑𝐷 ∈ (Met‘𝑋))
43ad2antrr 762 . . . . . . 7 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝐷 ∈ (Met‘𝑋))
5 difssd 3771 . . . . . . 7 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (𝑋𝑘) ⊆ 𝑋)
6 lebnum.s . . . . . . . . . . . 12 (𝜑𝑈𝐽)
76adantr 480 . . . . . . . . . . 11 ((𝜑𝑦𝑋) → 𝑈𝐽)
87sselda 3636 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑘𝐽)
9 elssuni 4499 . . . . . . . . . 10 (𝑘𝐽𝑘 𝐽)
108, 9syl 17 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑘 𝐽)
11 metxmet 22186 . . . . . . . . . . . 12 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
123, 11syl 17 . . . . . . . . . . 11 (𝜑𝐷 ∈ (∞Met‘𝑋))
13 lebnum.j . . . . . . . . . . . 12 𝐽 = (MetOpen‘𝐷)
1413mopnuni 22293 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
1512, 14syl 17 . . . . . . . . . 10 (𝜑𝑋 = 𝐽)
1615ad2antrr 762 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑋 = 𝐽)
1710, 16sseqtr4d 3675 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑘𝑋)
18 lebnumlem1.n . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋𝑈)
19 eleq1 2718 . . . . . . . . . . . . 13 (𝑘 = 𝑋 → (𝑘𝑈𝑋𝑈))
2019notbid 307 . . . . . . . . . . . 12 (𝑘 = 𝑋 → (¬ 𝑘𝑈 ↔ ¬ 𝑋𝑈))
2118, 20syl5ibrcom 237 . . . . . . . . . . 11 (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘𝑈))
2221necon2ad 2838 . . . . . . . . . 10 (𝜑 → (𝑘𝑈𝑘𝑋))
2322adantr 480 . . . . . . . . 9 ((𝜑𝑦𝑋) → (𝑘𝑈𝑘𝑋))
2423imp 444 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑘𝑋)
25 pssdifn0 3977 . . . . . . . 8 ((𝑘𝑋𝑘𝑋) → (𝑋𝑘) ≠ ∅)
2617, 24, 25syl2anc 694 . . . . . . 7 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (𝑋𝑘) ≠ ∅)
27 eqid 2651 . . . . . . . 8 (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
2827metdsre 22703 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋 ∧ (𝑋𝑘) ≠ ∅) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
294, 5, 26, 28syl3anc 1366 . . . . . 6 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
3027fmpt 6421 . . . . . 6 (∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ ↔ (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
3129, 30sylibr 224 . . . . 5 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → ∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
32 simplr 807 . . . . 5 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑦𝑋)
33 rsp 2958 . . . . 5 (∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ → (𝑦𝑋 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ))
3431, 32, 33sylc 65 . . . 4 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
352, 34fsumrecl 14509 . . 3 ((𝜑𝑦𝑋) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
36 lebnum.u . . . . . . 7 (𝜑𝑋 = 𝑈)
3736eleq2d 2716 . . . . . 6 (𝜑 → (𝑦𝑋𝑦 𝑈))
3837biimpa 500 . . . . 5 ((𝜑𝑦𝑋) → 𝑦 𝑈)
39 eluni2 4472 . . . . 5 (𝑦 𝑈 ↔ ∃𝑚𝑈 𝑦𝑚)
4038, 39sylib 208 . . . 4 ((𝜑𝑦𝑋) → ∃𝑚𝑈 𝑦𝑚)
41 0red 10079 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 ∈ ℝ)
42 simplr 807 . . . . . . 7 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑦𝑋)
43 eqid 2651 . . . . . . . 8 (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )) = (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))
4443metdsval 22697 . . . . . . 7 (𝑦𝑋 → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
4542, 44syl 17 . . . . . 6 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
463ad2antrr 762 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝐷 ∈ (Met‘𝑋))
47 difssd 3771 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑋𝑚) ⊆ 𝑋)
486ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑈𝐽)
49 simprl 809 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚𝑈)
5048, 49sseldd 3637 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚𝐽)
51 elssuni 4499 . . . . . . . . . . 11 (𝑚𝐽𝑚 𝐽)
5250, 51syl 17 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚 𝐽)
5346, 11, 143syl 18 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑋 = 𝐽)
5452, 53sseqtr4d 3675 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚𝑋)
55 eleq1 2718 . . . . . . . . . . . . . 14 (𝑚 = 𝑋 → (𝑚𝑈𝑋𝑈))
5655notbid 307 . . . . . . . . . . . . 13 (𝑚 = 𝑋 → (¬ 𝑚𝑈 ↔ ¬ 𝑋𝑈))
5718, 56syl5ibrcom 237 . . . . . . . . . . . 12 (𝜑 → (𝑚 = 𝑋 → ¬ 𝑚𝑈))
5857necon2ad 2838 . . . . . . . . . . 11 (𝜑 → (𝑚𝑈𝑚𝑋))
5958ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑚𝑈𝑚𝑋))
6049, 59mpd 15 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚𝑋)
61 pssdifn0 3977 . . . . . . . . 9 ((𝑚𝑋𝑚𝑋) → (𝑋𝑚) ≠ ∅)
6254, 60, 61syl2anc 694 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑋𝑚) ≠ ∅)
6343metdsre 22703 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑚) ⊆ 𝑋 ∧ (𝑋𝑚) ≠ ∅) → (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
6446, 47, 62, 63syl3anc 1366 . . . . . . 7 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
6564, 42ffvelrnd 6400 . . . . . 6 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ ℝ)
6645, 65eqeltrrd 2731 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
6735adantr 480 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
6812ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝐷 ∈ (∞Met‘𝑋))
6943metdsf 22698 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑚) ⊆ 𝑋) → (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
7068, 47, 69syl2anc 694 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
7170, 42ffvelrnd 6400 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ (0[,]+∞))
72 elxrge0 12319 . . . . . . . . 9 (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ (0[,]+∞) ↔ (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ ℝ* ∧ 0 ≤ ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦)))
7371, 72sylib 208 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ ℝ* ∧ 0 ≤ ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦)))
7473simprd 478 . . . . . . 7 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 ≤ ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦))
75 elndif 3767 . . . . . . . . . 10 (𝑦𝑚 → ¬ 𝑦 ∈ (𝑋𝑚))
7675ad2antll 765 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ¬ 𝑦 ∈ (𝑋𝑚))
7753difeq1d 3760 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑋𝑚) = ( 𝐽𝑚))
7813mopntop 22292 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
7968, 78syl 17 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝐽 ∈ Top)
80 eqid 2651 . . . . . . . . . . . . 13 𝐽 = 𝐽
8180opncld 20885 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑚𝐽) → ( 𝐽𝑚) ∈ (Clsd‘𝐽))
8279, 50, 81syl2anc 694 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ( 𝐽𝑚) ∈ (Clsd‘𝐽))
8377, 82eqeltrd 2730 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑋𝑚) ∈ (Clsd‘𝐽))
84 cldcls 20894 . . . . . . . . . 10 ((𝑋𝑚) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘(𝑋𝑚)) = (𝑋𝑚))
8583, 84syl 17 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((cls‘𝐽)‘(𝑋𝑚)) = (𝑋𝑚))
8676, 85neleqtrrd 2752 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ¬ 𝑦 ∈ ((cls‘𝐽)‘(𝑋𝑚)))
8743, 13metdseq0 22704 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑚) ⊆ 𝑋𝑦𝑋) → (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = 0 ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝑋𝑚))))
8868, 47, 42, 87syl3anc 1366 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = 0 ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝑋𝑚))))
8988necon3abid 2859 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ≠ 0 ↔ ¬ 𝑦 ∈ ((cls‘𝐽)‘(𝑋𝑚))))
9086, 89mpbird 247 . . . . . . 7 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ≠ 0)
9165, 74, 90ne0gt0d 10212 . . . . . 6 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 < ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦))
9291, 45breqtrd 4711 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 < inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
931ad2antrr 762 . . . . . 6 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑈 ∈ Fin)
9434adantlr 751 . . . . . 6 ((((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
9512ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝐷 ∈ (∞Met‘𝑋))
9627metdsf 22698 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
9795, 5, 96syl2anc 694 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
9827fmpt 6421 . . . . . . . . . . 11 (∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞) ↔ (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
9997, 98sylibr 224 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → ∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞))
100 rsp 2958 . . . . . . . . . 10 (∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞) → (𝑦𝑋 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞)))
10199, 32, 100sylc 65 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞))
102 elxrge0 12319 . . . . . . . . 9 (inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞) ↔ (inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )))
103101, 102sylib 208 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )))
104103simprd 478 . . . . . . 7 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 0 ≤ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
105104adantlr 751 . . . . . 6 ((((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) ∧ 𝑘𝑈) → 0 ≤ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
106 difeq2 3755 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑋𝑘) = (𝑋𝑚))
107106mpteq1d 4771 . . . . . . . 8 (𝑘 = 𝑚 → (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)))
108107rneqd 5385 . . . . . . 7 (𝑘 = 𝑚 → ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)))
109108infeq1d 8424 . . . . . 6 (𝑘 = 𝑚 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) = inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
11093, 94, 105, 109, 49fsumge1 14573 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ≤ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
11141, 66, 67, 92, 110ltletrd 10235 . . . 4 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 < Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
11240, 111rexlimddv 3064 . . 3 ((𝜑𝑦𝑋) → 0 < Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
11335, 112elrpd 11907 . 2 ((𝜑𝑦𝑋) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ+)
114 lebnumlem1.f . 2 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
115113, 114fmptd 6425 1 (𝜑𝐹:𝑋⟶ℝ+)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  cdif 3604  wss 3607  c0 3948   cuni 4468   class class class wbr 4685  cmpt 4762  ran crn 5144  wf 5922  cfv 5926  (class class class)co 6690  Fincfn 7997  infcinf 8388  cr 9973  0cc0 9974  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  +crp 11870  [,]cicc 12216  Σcsu 14460  ∞Metcxmt 19779  Metcme 19780  MetOpencmopn 19784  Topctop 20746  Clsdccld 20868  clsccl 20870  Compccmp 21237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-ec 7789  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873
This theorem is referenced by:  lebnumlem2  22808  lebnumlem3  22809
  Copyright terms: Public domain W3C validator