![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leadd2dd | Structured version Visualization version GIF version |
Description: Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
leadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2, 3, 4 | leadd2d 10834 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) |
6 | 1, 5 | mpbid 222 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 class class class wbr 4804 (class class class)co 6814 ℝcr 10147 + caddc 10151 ≤ cle 10287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 |
This theorem is referenced by: difgtsumgt 11558 expmulnbnd 13210 discr1 13214 hashun2 13384 abstri 14289 iseraltlem2 14632 prmreclem4 15845 tchcphlem1 23254 trirn 23403 nulmbl2 23524 voliunlem1 23538 uniioombllem4 23574 itg2split 23735 ulmcn 24372 abslogle 24584 emcllem2 24943 lgambdd 24983 chtublem 25156 chtub 25157 logfaclbnd 25167 bcmax 25223 chebbnd1lem2 25379 rplogsumlem1 25393 selberglem2 25455 selbergb 25458 chpdifbndlem1 25462 pntpbnd1a 25494 pntpbnd2 25496 pntibndlem2 25500 pntibndlem3 25501 pntlemg 25507 pntlemr 25511 pntlemk 25515 pntlemo 25516 ostth2lem3 25544 smcnlem 27882 minvecolem3 28062 staddi 29435 stadd3i 29437 nexple 30401 fsum2dsub 31015 resconn 31556 itg2addnc 33795 ftc1anclem8 33823 pell1qrgaplem 37957 leadd12dd 40048 ioodvbdlimc1lem2 40668 stoweidlem11 40749 stoweidlem26 40764 stirlinglem8 40819 stirlinglem12 40823 fourierdlem4 40849 fourierdlem10 40855 fourierdlem42 40887 fourierdlem47 40891 fourierdlem72 40916 fourierdlem79 40923 fourierdlem93 40937 fourierdlem101 40945 fourierdlem103 40947 fourierdlem104 40948 fourierdlem111 40955 hoidmv1lelem2 41330 vonioolem2 41419 vonicclem2 41422 p1lep2 41842 fmtnodvds 41984 lighneallem4a 42053 |
Copyright terms: Public domain | W3C validator |