![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leabs | Structured version Visualization version GIF version |
Description: A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.) |
Ref | Expression |
---|---|
leabs | ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 10204 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | id 22 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
3 | absid 14206 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | |
4 | eqcom 2755 | . . . 4 ⊢ ((abs‘𝐴) = 𝐴 ↔ 𝐴 = (abs‘𝐴)) | |
5 | eqle 10302 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = (abs‘𝐴)) → 𝐴 ≤ (abs‘𝐴)) | |
6 | 4, 5 | sylan2b 493 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) = 𝐴) → 𝐴 ≤ (abs‘𝐴)) |
7 | 3, 6 | syldan 488 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ≤ (abs‘𝐴)) |
8 | recn 10189 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | absge0 14197 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → 0 ≤ (abs‘𝐴)) |
11 | abscl 14188 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
12 | 8, 11 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ) |
13 | 0re 10203 | . . . . . 6 ⊢ 0 ∈ ℝ | |
14 | letr 10294 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → ((𝐴 ≤ 0 ∧ 0 ≤ (abs‘𝐴)) → 𝐴 ≤ (abs‘𝐴))) | |
15 | 13, 14 | mp3an2 1549 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → ((𝐴 ≤ 0 ∧ 0 ≤ (abs‘𝐴)) → 𝐴 ≤ (abs‘𝐴))) |
16 | 12, 15 | mpdan 705 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((𝐴 ≤ 0 ∧ 0 ≤ (abs‘𝐴)) → 𝐴 ≤ (abs‘𝐴))) |
17 | 10, 16 | mpan2d 712 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 → 𝐴 ≤ (abs‘𝐴))) |
18 | 17 | imp 444 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ≤ (abs‘𝐴)) |
19 | 1, 2, 7, 18 | lecasei 10306 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1620 ∈ wcel 2127 class class class wbr 4792 ‘cfv 6037 ℂcc 10097 ℝcr 10098 0cc0 10099 ≤ cle 10238 abscabs 14144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8501 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-n0 11456 df-z 11541 df-uz 11851 df-rp 11997 df-seq 12967 df-exp 13026 df-cj 14009 df-re 14010 df-im 14011 df-sqrt 14145 df-abs 14146 |
This theorem is referenced by: abslt 14224 absle 14225 abssubne0 14226 releabs 14231 leabsi 14289 leabsd 14323 aalioulem3 24259 nmoub3i 27908 |
Copyright terms: Public domain | W3C validator |