MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  le2sqd Structured version   Visualization version   GIF version

Theorem le2sqd 13250
Description: The square function on nonnegative reals is monotonic. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
resqcld.1 (𝜑𝐴 ∈ ℝ)
lt2sqd.2 (𝜑𝐵 ∈ ℝ)
lt2sqd.3 (𝜑 → 0 ≤ 𝐴)
lt2sqd.4 (𝜑 → 0 ≤ 𝐵)
Assertion
Ref Expression
le2sqd (𝜑 → (𝐴𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2)))

Proof of Theorem le2sqd
StepHypRef Expression
1 resqcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 lt2sqd.3 . 2 (𝜑 → 0 ≤ 𝐴)
3 lt2sqd.2 . 2 (𝜑𝐵 ∈ ℝ)
4 lt2sqd.4 . 2 (𝜑 → 0 ≤ 𝐵)
5 le2sq 13144 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2)))
61, 2, 3, 4, 5syl22anc 1476 1 (𝜑 → (𝐴𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 2144   class class class wbr 4784  (class class class)co 6792  cr 10136  0cc0 10137  cle 10276  2c2 11271  cexp 13066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-seq 13008  df-exp 13067
This theorem is referenced by:  abstri  14277  amgm2  14316  ipcau2  23251  tchcphlem1  23252  trirn  23401  rrxdstprj1  23410  minveclem3b  23417  minveclem4  23421  minveclem6  23423  pjthlem1  23426  atans2  24878  basellem8  25034  chpub  25165  dchrisum0  25429  mulog2sumlem2  25444  log2sumbnd  25453  logdivbnd  25465  pntlemk  25515  minvecolem4  28070  minvecolem5  28071  minvecolem6  28072  normpyc  28337  pjhthlem1  28584  chscllem2  28831  pjssposi  29365  2sqmod  29982  areacirclem2  33826  areacirclem4  33828  areacirclem5  33829  areacirc  33830  cntotbnd  33920  rrndstprj1  33954  pell1qrge1  37953  pell1qrgaplem  37956  pell14qrgapw  37959  pellqrex  37962
  Copyright terms: Public domain W3C validator