![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldilfset | Structured version Visualization version GIF version |
Description: The mapping from fiducial co-atom 𝑤 to its set of lattice dilations. (Contributed by NM, 11-May-2012.) |
Ref | Expression |
---|---|
ldilset.b | ⊢ 𝐵 = (Base‘𝐾) |
ldilset.l | ⊢ ≤ = (le‘𝐾) |
ldilset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ldilset.i | ⊢ 𝐼 = (LAut‘𝐾) |
Ref | Expression |
---|---|
ldilfset | ⊢ (𝐾 ∈ 𝐶 → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3352 | . 2 ⊢ (𝐾 ∈ 𝐶 → 𝐾 ∈ V) | |
2 | fveq2 6353 | . . . . 5 ⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾)) | |
3 | ldilset.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 2, 3 | syl6eqr 2812 | . . . 4 ⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻) |
5 | fveq2 6353 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (LAut‘𝑘) = (LAut‘𝐾)) | |
6 | ldilset.i | . . . . . 6 ⊢ 𝐼 = (LAut‘𝐾) | |
7 | 5, 6 | syl6eqr 2812 | . . . . 5 ⊢ (𝑘 = 𝐾 → (LAut‘𝑘) = 𝐼) |
8 | fveq2 6353 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
9 | ldilset.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
10 | 8, 9 | syl6eqr 2812 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
11 | fveq2 6353 | . . . . . . . . 9 ⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) | |
12 | ldilset.l | . . . . . . . . 9 ⊢ ≤ = (le‘𝐾) | |
13 | 11, 12 | syl6eqr 2812 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (le‘𝑘) = ≤ ) |
14 | 13 | breqd 4815 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑤 ↔ 𝑥 ≤ 𝑤)) |
15 | 14 | imbi1d 330 | . . . . . 6 ⊢ (𝑘 = 𝐾 → ((𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥))) |
16 | 10, 15 | raleqbidv 3291 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥))) |
17 | 7, 16 | rabeqbidv 3335 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)} = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)}) |
18 | 4, 17 | mpteq12dv 4885 | . . 3 ⊢ (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)}) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
19 | df-ldil 35911 | . . 3 ⊢ LDil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)})) | |
20 | fvex 6363 | . . . . 5 ⊢ (LHyp‘𝐾) ∈ V | |
21 | 3, 20 | eqeltri 2835 | . . . 4 ⊢ 𝐻 ∈ V |
22 | 21 | mptex 6651 | . . 3 ⊢ (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)}) ∈ V |
23 | 18, 19, 22 | fvmpt 6445 | . 2 ⊢ (𝐾 ∈ V → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
24 | 1, 23 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐶 → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∀wral 3050 {crab 3054 Vcvv 3340 class class class wbr 4804 ↦ cmpt 4881 ‘cfv 6049 Basecbs 16079 lecple 16170 LHypclh 35791 LAutclaut 35792 LDilcldil 35907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ldil 35911 |
This theorem is referenced by: ldilset 35916 |
Copyright terms: Public domain | W3C validator |