![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldgenpisyslem3 | Structured version Visualization version GIF version |
Description: Lemma for ldgenpisys 30569. (Contributed by Thierry Arnoux, 18-Jul-2020.) |
Ref | Expression |
---|---|
dynkin.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
dynkin.l | ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
dynkin.o | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
ldgenpisys.e | ⊢ 𝐸 = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
ldgenpisys.1 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
ldgenpisyslem3.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
Ref | Expression |
---|---|
ldgenpisyslem3 | ⊢ (𝜑 → 𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dynkin.p | . 2 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
2 | dynkin.l | . 2 ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | |
3 | dynkin.o | . 2 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
4 | ldgenpisys.e | . 2 ⊢ 𝐸 = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} | |
5 | ldgenpisys.1 | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
6 | id 22 | . . . . . 6 ⊢ (𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡) | |
7 | 6 | rgenw 3073 | . . . . 5 ⊢ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡) |
8 | ssintrab 4635 | . . . . 5 ⊢ (𝑇 ⊆ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡)) | |
9 | 7, 8 | mpbir 221 | . . . 4 ⊢ 𝑇 ⊆ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
10 | 9, 4 | sseqtr4i 3787 | . . 3 ⊢ 𝑇 ⊆ 𝐸 |
11 | ldgenpisyslem3.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
12 | 10, 11 | sseldi 3750 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
13 | 1 | ispisys 30555 | . . . . . . 7 ⊢ (𝑇 ∈ 𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇)) |
14 | 5, 13 | sylib 208 | . . . . . 6 ⊢ (𝜑 → (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇)) |
15 | 14 | simpld 482 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
16 | elpwi 4308 | . . . . 5 ⊢ (𝑇 ∈ 𝒫 𝒫 𝑂 → 𝑇 ⊆ 𝒫 𝑂) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝒫 𝑂) |
18 | 5 | adantr 466 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → 𝑇 ∈ 𝑃) |
19 | 11 | adantr 466 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → 𝐴 ∈ 𝑇) |
20 | simpr 471 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → 𝑏 ∈ 𝑇) | |
21 | 1 | inelpisys 30557 | . . . . . . 7 ⊢ ((𝑇 ∈ 𝑃 ∧ 𝐴 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇) → (𝐴 ∩ 𝑏) ∈ 𝑇) |
22 | 18, 19, 20, 21 | syl3anc 1476 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → (𝐴 ∩ 𝑏) ∈ 𝑇) |
23 | 10, 22 | sseldi 3750 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → (𝐴 ∩ 𝑏) ∈ 𝐸) |
24 | 23 | ralrimiva 3115 | . . . 4 ⊢ (𝜑 → ∀𝑏 ∈ 𝑇 (𝐴 ∩ 𝑏) ∈ 𝐸) |
25 | 17, 24 | jca 501 | . . 3 ⊢ (𝜑 → (𝑇 ⊆ 𝒫 𝑂 ∧ ∀𝑏 ∈ 𝑇 (𝐴 ∩ 𝑏) ∈ 𝐸)) |
26 | ssrab 3829 | . . 3 ⊢ (𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ↔ (𝑇 ⊆ 𝒫 𝑂 ∧ ∀𝑏 ∈ 𝑇 (𝐴 ∩ 𝑏) ∈ 𝐸)) | |
27 | 25, 26 | sylibr 224 | . 2 ⊢ (𝜑 → 𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
28 | 1, 2, 3, 4, 5, 12, 27 | ldgenpisyslem2 30567 | 1 ⊢ (𝜑 → 𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∀wral 3061 {crab 3065 ∖ cdif 3720 ∩ cin 3722 ⊆ wss 3723 ∅c0 4063 𝒫 cpw 4298 ∪ cuni 4575 ∩ cint 4612 Disj wdisj 4755 class class class wbr 4787 ‘cfv 6030 ωcom 7216 ≼ cdom 8111 ficfi 8476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-disj 4756 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7900 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fi 8477 df-oi 8575 df-card 8969 df-acn 8972 df-cda 9196 |
This theorem is referenced by: ldgenpisys 30569 |
Copyright terms: Public domain | W3C validator |