Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepsnlinclem2 Structured version   Visualization version   GIF version

Theorem ldepsnlinclem2 42823
Description: Lemma 2 for ldepsnlinc 42825. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
Assertion
Ref Expression
ldepsnlinclem2 (𝐹 ∈ ((Base‘ℤring) ↑𝑚 {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)

Proof of Theorem ldepsnlinclem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8047 . 2 (𝐹 ∈ ((Base‘ℤring) ↑𝑚 {𝐴}) → 𝐹:{𝐴}⟶(Base‘ℤring))
2 zlmodzxzldep.a . . . . 5 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
3 prex 5058 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
42, 3eqeltri 2835 . . . 4 𝐴 ∈ V
54fsn2 6567 . . 3 (𝐹:{𝐴}⟶(Base‘ℤring) ↔ ((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
6 oveq1 6821 . . . . . 6 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹( linC ‘𝑍){𝐴}) = ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}))
76adantl 473 . . . . 5 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹( linC ‘𝑍){𝐴}) = ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}))
8 zlmodzxzldep.z . . . . . . . . 9 𝑍 = (ℤring freeLMod {0, 1})
98zlmodzxzlmod 42660 . . . . . . . 8 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
109simpli 476 . . . . . . 7 𝑍 ∈ LMod
1110a1i 11 . . . . . 6 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → 𝑍 ∈ LMod)
12 3z 11622 . . . . . . . . 9 3 ∈ ℤ
13 6nn 11401 . . . . . . . . . 10 6 ∈ ℕ
1413nnzi 11613 . . . . . . . . 9 6 ∈ ℤ
158zlmodzxzel 42661 . . . . . . . . 9 ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍))
1612, 14, 15mp2an 710 . . . . . . . 8 {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍)
172, 16eqeltri 2835 . . . . . . 7 𝐴 ∈ (Base‘𝑍)
1817a1i 11 . . . . . 6 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → 𝐴 ∈ (Base‘𝑍))
19 simpl 474 . . . . . 6 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹𝐴) ∈ (Base‘ℤring))
20 eqid 2760 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
219simpri 481 . . . . . . 7 ring = (Scalar‘𝑍)
22 eqid 2760 . . . . . . 7 (Base‘ℤring) = (Base‘ℤring)
23 eqid 2760 . . . . . . 7 ( ·𝑠𝑍) = ( ·𝑠𝑍)
2420, 21, 22, 23lincvalsng 42733 . . . . . 6 ((𝑍 ∈ LMod ∧ 𝐴 ∈ (Base‘𝑍) ∧ (𝐹𝐴) ∈ (Base‘ℤring)) → ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
2511, 18, 19, 24syl3anc 1477 . . . . 5 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
267, 25eqtrd 2794 . . . 4 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹( linC ‘𝑍){𝐴}) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
27 eqid 2760 . . . . . 6 {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
28 eqid 2760 . . . . . 6 (-g𝑍) = (-g𝑍)
29 zlmodzxzldep.b . . . . . 6 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
308, 27, 23, 28, 2, 29zlmodzxznm 42814 . . . . 5 𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴)
31 r19.26 3202 . . . . . 6 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) ↔ (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴))
32 oveq1 6821 . . . . . . . . . 10 (𝑖 = (𝐹𝐴) → (𝑖( ·𝑠𝑍)𝐴) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
3332neeq1d 2991 . . . . . . . . 9 (𝑖 = (𝐹𝐴) → ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ↔ ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
3433rspcv 3445 . . . . . . . 8 ((𝐹𝐴) ∈ ℤ → (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
35 zringbas 20046 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
3635eqcomi 2769 . . . . . . . . . . 11 (Base‘ℤring) = ℤ
3736eleq2i 2831 . . . . . . . . . 10 ((𝐹𝐴) ∈ (Base‘ℤring) ↔ (𝐹𝐴) ∈ ℤ)
3837biimpi 206 . . . . . . . . 9 ((𝐹𝐴) ∈ (Base‘ℤring) → (𝐹𝐴) ∈ ℤ)
3938adantr 472 . . . . . . . 8 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹𝐴) ∈ ℤ)
4034, 39syl11 33 . . . . . . 7 (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 → (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4140adantr 472 . . . . . 6 ((∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4231, 41sylbi 207 . . . . 5 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4330, 42ax-mp 5 . . . 4 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵)
4426, 43eqnetrd 2999 . . 3 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)
455, 44sylbi 207 . 2 (𝐹:{𝐴}⟶(Base‘ℤring) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)
461, 45syl 17 1 (𝐹 ∈ ((Base‘ℤring) ↑𝑚 {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  Vcvv 3340  {csn 4321  {cpr 4323  cop 4327  wf 6045  cfv 6049  (class class class)co 6814  𝑚 cmap 8025  0cc0 10148  1c1 10149  2c2 11282  3c3 11283  4c4 11284  6c6 11286  cz 11589  Basecbs 16079  Scalarcsca 16166   ·𝑠 cvsca 16167  -gcsg 17645  LModclmod 19085  ringzring 20040   freeLMod cfrlm 20312   linC clinc 42721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-dvds 15203  df-prm 15608  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-0g 16324  df-gsum 16325  df-prds 16330  df-pws 16332  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-subg 17812  df-cntz 17970  df-cmn 18415  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-subrg 19000  df-lmod 19087  df-lss 19155  df-sra 19394  df-rgmod 19395  df-cnfld 19969  df-zring 20041  df-dsmm 20298  df-frlm 20313  df-linc 42723
This theorem is referenced by:  ldepsnlinc  42825
  Copyright terms: Public domain W3C validator