![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldepsnlinclem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for ldepsnlinc 42826. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzldep.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
zlmodzxzldep.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
Ref | Expression |
---|---|
ldepsnlinclem1 | ⊢ (𝐹 ∈ ((Base‘ℤring) ↑𝑚 {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8048 | . 2 ⊢ (𝐹 ∈ ((Base‘ℤring) ↑𝑚 {𝐵}) → 𝐹:{𝐵}⟶(Base‘ℤring)) | |
2 | zlmodzxzldep.b | . . . . 5 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
3 | prex 5059 | . . . . 5 ⊢ {〈0, 2〉, 〈1, 4〉} ∈ V | |
4 | 2, 3 | eqeltri 2836 | . . . 4 ⊢ 𝐵 ∈ V |
5 | 4 | fsn2 6568 | . . 3 ⊢ (𝐹:{𝐵}⟶(Base‘ℤring) ↔ ((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉})) |
6 | oveq1 6822 | . . . . . 6 ⊢ (𝐹 = {〈𝐵, (𝐹‘𝐵)〉} → (𝐹( linC ‘𝑍){𝐵}) = ({〈𝐵, (𝐹‘𝐵)〉} ( linC ‘𝑍){𝐵})) | |
7 | 6 | adantl 473 | . . . . 5 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹( linC ‘𝑍){𝐵}) = ({〈𝐵, (𝐹‘𝐵)〉} ( linC ‘𝑍){𝐵})) |
8 | zlmodzxzldep.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
9 | 8 | zlmodzxzlmod 42661 | . . . . . . . 8 ⊢ (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) |
10 | 9 | simpli 476 | . . . . . . 7 ⊢ 𝑍 ∈ LMod |
11 | 10 | a1i 11 | . . . . . 6 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → 𝑍 ∈ LMod) |
12 | 2z 11622 | . . . . . . . . 9 ⊢ 2 ∈ ℤ | |
13 | 4z 11624 | . . . . . . . . 9 ⊢ 4 ∈ ℤ | |
14 | 8 | zlmodzxzel 42662 | . . . . . . . . 9 ⊢ ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {〈0, 2〉, 〈1, 4〉} ∈ (Base‘𝑍)) |
15 | 12, 13, 14 | mp2an 710 | . . . . . . . 8 ⊢ {〈0, 2〉, 〈1, 4〉} ∈ (Base‘𝑍) |
16 | 2, 15 | eqeltri 2836 | . . . . . . 7 ⊢ 𝐵 ∈ (Base‘𝑍) |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → 𝐵 ∈ (Base‘𝑍)) |
18 | simpl 474 | . . . . . 6 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹‘𝐵) ∈ (Base‘ℤring)) | |
19 | eqid 2761 | . . . . . . 7 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
20 | 9 | simpri 481 | . . . . . . 7 ⊢ ℤring = (Scalar‘𝑍) |
21 | eqid 2761 | . . . . . . 7 ⊢ (Base‘ℤring) = (Base‘ℤring) | |
22 | eqid 2761 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑍) = ( ·𝑠 ‘𝑍) | |
23 | 19, 20, 21, 22 | lincvalsng 42734 | . . . . . 6 ⊢ ((𝑍 ∈ LMod ∧ 𝐵 ∈ (Base‘𝑍) ∧ (𝐹‘𝐵) ∈ (Base‘ℤring)) → ({〈𝐵, (𝐹‘𝐵)〉} ( linC ‘𝑍){𝐵}) = ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵)) |
24 | 11, 17, 18, 23 | syl3anc 1477 | . . . . 5 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ({〈𝐵, (𝐹‘𝐵)〉} ( linC ‘𝑍){𝐵}) = ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵)) |
25 | 7, 24 | eqtrd 2795 | . . . 4 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹( linC ‘𝑍){𝐵}) = ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵)) |
26 | eqid 2761 | . . . . . 6 ⊢ {〈0, 0〉, 〈1, 0〉} = {〈0, 0〉, 〈1, 0〉} | |
27 | eqid 2761 | . . . . . 6 ⊢ (-g‘𝑍) = (-g‘𝑍) | |
28 | zlmodzxzldep.a | . . . . . 6 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
29 | 8, 26, 22, 27, 28, 2 | zlmodzxznm 42815 | . . . . 5 ⊢ ∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) |
30 | r19.26 3203 | . . . . . 6 ⊢ (∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) ↔ (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) | |
31 | oveq1 6822 | . . . . . . . . . 10 ⊢ (𝑖 = (𝐹‘𝐵) → (𝑖( ·𝑠 ‘𝑍)𝐵) = ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵)) | |
32 | 31 | neeq1d 2992 | . . . . . . . . 9 ⊢ (𝑖 = (𝐹‘𝐵) → ((𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴 ↔ ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
33 | 32 | rspcv 3446 | . . . . . . . 8 ⊢ ((𝐹‘𝐵) ∈ ℤ → (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴 → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
34 | zringbas 20047 | . . . . . . . . . . . 12 ⊢ ℤ = (Base‘ℤring) | |
35 | 34 | eqcomi 2770 | . . . . . . . . . . 11 ⊢ (Base‘ℤring) = ℤ |
36 | 35 | eleq2i 2832 | . . . . . . . . . 10 ⊢ ((𝐹‘𝐵) ∈ (Base‘ℤring) ↔ (𝐹‘𝐵) ∈ ℤ) |
37 | 36 | biimpi 206 | . . . . . . . . 9 ⊢ ((𝐹‘𝐵) ∈ (Base‘ℤring) → (𝐹‘𝐵) ∈ ℤ) |
38 | 37 | adantr 472 | . . . . . . . 8 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹‘𝐵) ∈ ℤ) |
39 | 33, 38 | syl11 33 | . . . . . . 7 ⊢ (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴 → (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
40 | 39 | adantl 473 | . . . . . 6 ⊢ ((∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) → (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
41 | 30, 40 | sylbi 207 | . . . . 5 ⊢ (∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) → (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
42 | 29, 41 | ax-mp 5 | . . . 4 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) |
43 | 25, 42 | eqnetrd 3000 | . . 3 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) |
44 | 5, 43 | sylbi 207 | . 2 ⊢ (𝐹:{𝐵}⟶(Base‘ℤring) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) |
45 | 1, 44 | syl 17 | 1 ⊢ (𝐹 ∈ ((Base‘ℤring) ↑𝑚 {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ≠ wne 2933 ∀wral 3051 Vcvv 3341 {csn 4322 {cpr 4324 〈cop 4328 ⟶wf 6046 ‘cfv 6050 (class class class)co 6815 ↑𝑚 cmap 8026 0cc0 10149 1c1 10150 2c2 11283 3c3 11284 4c4 11285 6c6 11287 ℤcz 11590 Basecbs 16080 Scalarcsca 16167 ·𝑠 cvsca 16168 -gcsg 17646 LModclmod 19086 ℤringzring 20041 freeLMod cfrlm 20313 linC clinc 42722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 ax-addf 10228 ax-mulf 10229 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-of 7064 df-om 7233 df-1st 7335 df-2nd 7336 df-supp 7466 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-2o 7732 df-oadd 7735 df-er 7914 df-map 8028 df-ixp 8078 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-fsupp 8444 df-sup 8516 df-inf 8517 df-oi 8583 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-z 11591 df-dec 11707 df-uz 11901 df-rp 12047 df-fz 12541 df-fzo 12681 df-seq 13017 df-exp 13076 df-hash 13333 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-dvds 15204 df-prm 15609 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-mulr 16178 df-starv 16179 df-sca 16180 df-vsca 16181 df-ip 16182 df-tset 16183 df-ple 16184 df-ds 16187 df-unif 16188 df-hom 16189 df-cco 16190 df-0g 16325 df-gsum 16326 df-prds 16331 df-pws 16333 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-grp 17647 df-minusg 17648 df-sbg 17649 df-mulg 17763 df-subg 17813 df-cntz 17971 df-cmn 18416 df-mgp 18711 df-ur 18723 df-ring 18770 df-cring 18771 df-subrg 19001 df-lmod 19088 df-lss 19156 df-sra 19395 df-rgmod 19396 df-cnfld 19970 df-zring 20042 df-dsmm 20299 df-frlm 20314 df-linc 42724 |
This theorem is referenced by: ldepsnlinc 42826 |
Copyright terms: Public domain | W3C validator |