Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepsnlinc Structured version   Visualization version   GIF version

Theorem ldepsnlinc 42622
Description: The reverse implication of islindeps2 42597 does not hold for arbitrary (left) modules, see note in [Roman] p. 112: "... if a nontrivial linear combination of the elements ... in an R-module M is 0, ... where not all of the coefficients are 0, then we cannot conclude ... that one of the elements ... is a linear combination of the others." This means that there is at least one left module having a linearly dependent subset in which there is at least one element which is not a linear combinantion of the other elements of this subset. Such a left module can be constructed by using zlmodzxzequa 42610 and zlmodzxznm 42611. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.)
Assertion
Ref Expression
ldepsnlinc 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣))
Distinct variable group:   𝑓,𝑚,𝑠,𝑣

Proof of Theorem ldepsnlinc
StepHypRef Expression
1 eqid 2651 . . . 4 (ℤring freeLMod {0, 1}) = (ℤring freeLMod {0, 1})
21zlmodzxzlmod 42457 . . 3 ((ℤring freeLMod {0, 1}) ∈ LMod ∧ ℤring = (Scalar‘(ℤring freeLMod {0, 1})))
32simpli 473 . 2 (ℤring freeLMod {0, 1}) ∈ LMod
4 3z 11448 . . . . 5 3 ∈ ℤ
5 6nn 11227 . . . . . 6 6 ∈ ℕ
65nnzi 11439 . . . . 5 6 ∈ ℤ
71zlmodzxzel 42458 . . . . 5 ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘(ℤring freeLMod {0, 1})))
84, 6, 7mp2an 708 . . . 4 {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘(ℤring freeLMod {0, 1}))
9 2z 11447 . . . . 5 2 ∈ ℤ
10 4z 11449 . . . . 5 4 ∈ ℤ
111zlmodzxzel 42458 . . . . 5 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘(ℤring freeLMod {0, 1})))
129, 10, 11mp2an 708 . . . 4 {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘(ℤring freeLMod {0, 1}))
13 prelpwi 4945 . . . 4 (({⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘(ℤring freeLMod {0, 1})) ∧ {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘(ℤring freeLMod {0, 1}))) → {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1})))
148, 12, 13mp2an 708 . . 3 {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))
15 eqid 2651 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} = {⟨0, 3⟩, ⟨1, 6⟩}
16 eqid 2651 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} = {⟨0, 2⟩, ⟨1, 4⟩}
171, 15, 16zlmodzxzldep 42618 . . . 4 {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1})
181, 15, 16ldepsnlinclem1 42619 . . . . . . . 8 (𝑓 ∈ ((Base‘ℤring) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}}) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})
19 simpr 476 . . . . . . . . . . . 12 (((ℤring freeLMod {0, 1}) ∈ LMod ∧ ℤring = (Scalar‘(ℤring freeLMod {0, 1}))) → ℤring = (Scalar‘(ℤring freeLMod {0, 1})))
2019eqcomd 2657 . . . . . . . . . . 11 (((ℤring freeLMod {0, 1}) ∈ LMod ∧ ℤring = (Scalar‘(ℤring freeLMod {0, 1}))) → (Scalar‘(ℤring freeLMod {0, 1})) = ℤring)
212, 20ax-mp 5 . . . . . . . . . 10 (Scalar‘(ℤring freeLMod {0, 1})) = ℤring
2221fveq2i 6232 . . . . . . . . 9 (Base‘(Scalar‘(ℤring freeLMod {0, 1}))) = (Base‘ℤring)
2322oveq1i 6700 . . . . . . . 8 ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}}) = ((Base‘ℤring) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}})
2418, 23eleq2s 2748 . . . . . . 7 (𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}}) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})
2524a1d 25 . . . . . 6 (𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}}) → (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩}))
2625rgen 2951 . . . . 5 𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})
271, 15, 16ldepsnlinclem2 42620 . . . . . . . 8 (𝑓 ∈ ((Base‘ℤring) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}}) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})
2822oveq1i 6700 . . . . . . . 8 ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}}) = ((Base‘ℤring) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}})
2927, 28eleq2s 2748 . . . . . . 7 (𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}}) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})
3029a1d 25 . . . . . 6 (𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}}) → (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩}))
3130rgen 2951 . . . . 5 𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})
32 prex 4939 . . . . . 6 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
33 prex 4939 . . . . . 6 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
34 sneq 4220 . . . . . . . . . 10 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → {𝑣} = {{⟨0, 3⟩, ⟨1, 6⟩}})
3534difeq2d 3761 . . . . . . . . 9 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}) = ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 3⟩, ⟨1, 6⟩}}))
361, 15, 16zlmodzxzldeplem 42612 . . . . . . . . . 10 {⟨0, 3⟩, ⟨1, 6⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩}
37 difprsn1 4362 . . . . . . . . . 10 ({⟨0, 3⟩, ⟨1, 6⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 3⟩, ⟨1, 6⟩}}) = {{⟨0, 2⟩, ⟨1, 4⟩}})
3836, 37ax-mp 5 . . . . . . . . 9 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 3⟩, ⟨1, 6⟩}}) = {{⟨0, 2⟩, ⟨1, 4⟩}}
3935, 38syl6eq 2701 . . . . . . . 8 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}) = {{⟨0, 2⟩, ⟨1, 4⟩}})
4039oveq2d 6706 . . . . . . 7 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) = ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}}))
4139oveq2d 6706 . . . . . . . . 9 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) = (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}))
42 id 22 . . . . . . . . 9 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → 𝑣 = {⟨0, 3⟩, ⟨1, 6⟩})
4341, 42neeq12d 2884 . . . . . . . 8 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ((𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣 ↔ (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩}))
4443imbi2d 329 . . . . . . 7 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ((𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})))
4540, 44raleqbidv 3182 . . . . . 6 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → (∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})))
46 sneq 4220 . . . . . . . . . 10 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → {𝑣} = {{⟨0, 2⟩, ⟨1, 4⟩}})
4746difeq2d 3761 . . . . . . . . 9 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}) = ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 2⟩, ⟨1, 4⟩}}))
48 difprsn2 4363 . . . . . . . . . 10 ({⟨0, 3⟩, ⟨1, 6⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 2⟩, ⟨1, 4⟩}}) = {{⟨0, 3⟩, ⟨1, 6⟩}})
4936, 48ax-mp 5 . . . . . . . . 9 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 2⟩, ⟨1, 4⟩}}) = {{⟨0, 3⟩, ⟨1, 6⟩}}
5047, 49syl6eq 2701 . . . . . . . 8 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}) = {{⟨0, 3⟩, ⟨1, 6⟩}})
5150oveq2d 6706 . . . . . . 7 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) = ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}}))
5250oveq2d 6706 . . . . . . . . 9 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) = (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}))
53 id 22 . . . . . . . . 9 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → 𝑣 = {⟨0, 2⟩, ⟨1, 4⟩})
5452, 53neeq12d 2884 . . . . . . . 8 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ((𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣 ↔ (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩}))
5554imbi2d 329 . . . . . . 7 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ((𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})))
5651, 55raleqbidv 3182 . . . . . 6 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → (∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})))
5732, 33, 45, 56ralpr 4270 . . . . 5 (∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ (∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩}) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})))
5826, 31, 57mpbir2an 975 . . . 4 𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣)
5917, 58pm3.2i 470 . . 3 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣))
60 breq1 4688 . . . . 5 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (𝑠 linDepS (ℤring freeLMod {0, 1}) ↔ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1})))
61 id 22 . . . . . 6 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → 𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}})
62 difeq1 3754 . . . . . . . 8 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (𝑠 ∖ {𝑣}) = ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))
6362oveq2d 6706 . . . . . . 7 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣})) = ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})))
6462oveq2d 6706 . . . . . . . . 9 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) = (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})))
6564neeq1d 2882 . . . . . . . 8 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → ((𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣 ↔ (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣))
6665imbi2d 329 . . . . . . 7 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → ((𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣)))
6763, 66raleqbidv 3182 . . . . . 6 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣)))
6861, 67raleqbidv 3182 . . . . 5 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣)))
6960, 68anbi12d 747 . . . 4 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → ((𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣))))
7069rspcev 3340 . . 3 (({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1})) ∧ ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣))) → ∃𝑠 ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))(𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)))
7114, 59, 70mp2an 708 . 2 𝑠 ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))(𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))
72 fveq2 6229 . . . . 5 (𝑚 = (ℤring freeLMod {0, 1}) → (Base‘𝑚) = (Base‘(ℤring freeLMod {0, 1})))
7372pweqd 4196 . . . 4 (𝑚 = (ℤring freeLMod {0, 1}) → 𝒫 (Base‘𝑚) = 𝒫 (Base‘(ℤring freeLMod {0, 1})))
74 breq2 4689 . . . . 5 (𝑚 = (ℤring freeLMod {0, 1}) → (𝑠 linDepS 𝑚𝑠 linDepS (ℤring freeLMod {0, 1})))
75 fveq2 6229 . . . . . . . . 9 (𝑚 = (ℤring freeLMod {0, 1}) → (Scalar‘𝑚) = (Scalar‘(ℤring freeLMod {0, 1})))
7675fveq2d 6233 . . . . . . . 8 (𝑚 = (ℤring freeLMod {0, 1}) → (Base‘(Scalar‘𝑚)) = (Base‘(Scalar‘(ℤring freeLMod {0, 1}))))
7776oveq1d 6705 . . . . . . 7 (𝑚 = (ℤring freeLMod {0, 1}) → ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣})) = ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣})))
7875fveq2d 6233 . . . . . . . . 9 (𝑚 = (ℤring freeLMod {0, 1}) → (0g‘(Scalar‘𝑚)) = (0g‘(Scalar‘(ℤring freeLMod {0, 1}))))
7978breq2d 4697 . . . . . . . 8 (𝑚 = (ℤring freeLMod {0, 1}) → (𝑓 finSupp (0g‘(Scalar‘𝑚)) ↔ 𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1})))))
80 fveq2 6229 . . . . . . . . . 10 (𝑚 = (ℤring freeLMod {0, 1}) → ( linC ‘𝑚) = ( linC ‘(ℤring freeLMod {0, 1})))
8180oveqd 6707 . . . . . . . . 9 (𝑚 = (ℤring freeLMod {0, 1}) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})))
8281neeq1d 2882 . . . . . . . 8 (𝑚 = (ℤring freeLMod {0, 1}) → ((𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣 ↔ (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))
8379, 82imbi12d 333 . . . . . . 7 (𝑚 = (ℤring freeLMod {0, 1}) → ((𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)))
8477, 83raleqbidv 3182 . . . . . 6 (𝑚 = (ℤring freeLMod {0, 1}) → (∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)))
8584ralbidv 3015 . . . . 5 (𝑚 = (ℤring freeLMod {0, 1}) → (∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)))
8674, 85anbi12d 747 . . . 4 (𝑚 = (ℤring freeLMod {0, 1}) → ((𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ (𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))))
8773, 86rexeqbidv 3183 . . 3 (𝑚 = (ℤring freeLMod {0, 1}) → (∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ ∃𝑠 ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))(𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))))
8887rspcev 3340 . 2 (((ℤring freeLMod {0, 1}) ∈ LMod ∧ ∃𝑠 ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))(𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))) → ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)))
893, 71, 88mp2an 708 1 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  cdif 3604  𝒫 cpw 4191  {csn 4210  {cpr 4212  cop 4216   class class class wbr 4685  cfv 5926  (class class class)co 6690  𝑚 cmap 7899   finSupp cfsupp 8316  0cc0 9974  1c1 9975  2c2 11108  3c3 11109  4c4 11110  6c6 11112  cz 11415  Basecbs 15904  Scalarcsca 15991  0gc0g 16147  LModclmod 18911  ringzring 19866   freeLMod cfrlm 20138   linC clinc 42518   linDepS clindeps 42555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-prm 15433  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-subrg 18826  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-cnfld 19795  df-zring 19867  df-dsmm 20124  df-frlm 20139  df-linc 42520  df-lininds 42556  df-lindeps 42558
This theorem is referenced by:  ldepslinc  42623
  Copyright terms: Public domain W3C validator