![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvpss | Structured version Visualization version GIF version |
Description: The covers relation implies proper subset. (cvpss 29374 analog.) (Contributed by NM, 7-Jan-2015.) |
Ref | Expression |
---|---|
lcvfbr.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lcvfbr.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lcvfbr.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lcvfbr.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lcvfbr.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lcvpss.d | ⊢ (𝜑 → 𝑇𝐶𝑈) |
Ref | Expression |
---|---|
lcvpss | ⊢ (𝜑 → 𝑇 ⊊ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvpss.d | . . 3 ⊢ (𝜑 → 𝑇𝐶𝑈) | |
2 | lcvfbr.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lcvfbr.c | . . . 4 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
4 | lcvfbr.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
5 | lcvfbr.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
6 | lcvfbr.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | 2, 3, 4, 5, 6 | lcvbr 34728 | . . 3 ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)))) |
8 | 1, 7 | mpbid 222 | . 2 ⊢ (𝜑 → (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈))) |
9 | 8 | simpld 477 | 1 ⊢ (𝜑 → 𝑇 ⊊ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ∃wrex 3015 ⊊ wpss 3681 class class class wbr 4760 ‘cfv 6001 LSubSpclss 19055 ⋖L clcv 34725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-iota 5964 df-fun 6003 df-fv 6009 df-lcv 34726 |
This theorem is referenced by: lcvntr 34733 lcvat 34737 lsatcveq0 34739 lsat0cv 34740 lcvexchlem4 34744 lcvexchlem5 34745 lcv1 34748 lsatexch 34750 lsatcvat2 34758 islshpcv 34760 |
Copyright terms: Public domain | W3C validator |