Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvntr Structured version   Visualization version   GIF version

Theorem lcvntr 34835
 Description: The covers relation is not transitive. (cvntr 29491 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvnbtwn.s 𝑆 = (LSubSp‘𝑊)
lcvnbtwn.c 𝐶 = ( ⋖L𝑊)
lcvnbtwn.w (𝜑𝑊𝑋)
lcvnbtwn.r (𝜑𝑅𝑆)
lcvnbtwn.t (𝜑𝑇𝑆)
lcvnbtwn.u (𝜑𝑈𝑆)
lcvnbtwn.d (𝜑𝑅𝐶𝑇)
lcvntr.p (𝜑𝑇𝐶𝑈)
Assertion
Ref Expression
lcvntr (𝜑 → ¬ 𝑅𝐶𝑈)

Proof of Theorem lcvntr
StepHypRef Expression
1 lcvnbtwn.s . . . 4 𝑆 = (LSubSp‘𝑊)
2 lcvnbtwn.c . . . 4 𝐶 = ( ⋖L𝑊)
3 lcvnbtwn.w . . . 4 (𝜑𝑊𝑋)
4 lcvnbtwn.r . . . 4 (𝜑𝑅𝑆)
5 lcvnbtwn.t . . . 4 (𝜑𝑇𝑆)
6 lcvnbtwn.d . . . 4 (𝜑𝑅𝐶𝑇)
71, 2, 3, 4, 5, 6lcvpss 34833 . . 3 (𝜑𝑅𝑇)
8 lcvnbtwn.u . . . 4 (𝜑𝑈𝑆)
9 lcvntr.p . . . 4 (𝜑𝑇𝐶𝑈)
101, 2, 3, 5, 8, 9lcvpss 34833 . . 3 (𝜑𝑇𝑈)
117, 10jca 501 . 2 (𝜑 → (𝑅𝑇𝑇𝑈))
123adantr 466 . . . 4 ((𝜑𝑅𝐶𝑈) → 𝑊𝑋)
134adantr 466 . . . 4 ((𝜑𝑅𝐶𝑈) → 𝑅𝑆)
148adantr 466 . . . 4 ((𝜑𝑅𝐶𝑈) → 𝑈𝑆)
155adantr 466 . . . 4 ((𝜑𝑅𝐶𝑈) → 𝑇𝑆)
16 simpr 471 . . . 4 ((𝜑𝑅𝐶𝑈) → 𝑅𝐶𝑈)
171, 2, 12, 13, 14, 15, 16lcvnbtwn 34834 . . 3 ((𝜑𝑅𝐶𝑈) → ¬ (𝑅𝑇𝑇𝑈))
1817ex 397 . 2 (𝜑 → (𝑅𝐶𝑈 → ¬ (𝑅𝑇𝑇𝑈)))
1911, 18mt2d 133 1 (𝜑 → ¬ 𝑅𝐶𝑈)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ⊊ wpss 3724   class class class wbr 4786  ‘cfv 6031  LSubSpclss 19142   ⋖L clcv 34827 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-lcv 34828 This theorem is referenced by:  lsatcv0eq  34856
 Copyright terms: Public domain W3C validator