![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcosslsp | Structured version Visualization version GIF version |
Description: Lemma for lspeqlco 42746. (Contributed by AV, 20-Apr-2019.) |
Ref | Expression |
---|---|
lspeqvlco.b | ⊢ 𝐵 = (Base‘𝑀) |
Ref | Expression |
---|---|
lcosslsp | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellcoellss 42742 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ LMod ∧ 𝑠 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑠) → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠) | |
2 | 1 | 3exp 1111 | . . . . . . . . 9 ⊢ (𝑀 ∈ LMod → (𝑠 ∈ (LSubSp‘𝑀) → (𝑉 ⊆ 𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠))) |
3 | 2 | ad2antrr 697 | . . . . . . . 8 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → (𝑠 ∈ (LSubSp‘𝑀) → (𝑉 ⊆ 𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠))) |
4 | 3 | imp 393 | . . . . . . 7 ⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (𝑉 ⊆ 𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠)) |
5 | elequ1 2151 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑠 ↔ 𝑥 ∈ 𝑠)) | |
6 | 5 | rspcv 3454 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝑀 LinCo 𝑉) → (∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠 → 𝑥 ∈ 𝑠)) |
7 | 6 | ad2antlr 698 | . . . . . . 7 ⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠 → 𝑥 ∈ 𝑠)) |
8 | 4, 7 | syld 47 | . . . . . 6 ⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠)) |
9 | 8 | ralrimiva 3114 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → ∀𝑠 ∈ (LSubSp‘𝑀)(𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠)) |
10 | vex 3352 | . . . . . 6 ⊢ 𝑥 ∈ V | |
11 | 10 | elintrab 4621 | . . . . 5 ⊢ (𝑥 ∈ ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠} ↔ ∀𝑠 ∈ (LSubSp‘𝑀)(𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠)) |
12 | 9, 11 | sylibr 224 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑥 ∈ ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠}) |
13 | simpll 742 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑀 ∈ LMod) | |
14 | elpwi 4305 | . . . . . 6 ⊢ (𝑉 ∈ 𝒫 𝐵 → 𝑉 ⊆ 𝐵) | |
15 | 14 | ad2antlr 698 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑉 ⊆ 𝐵) |
16 | lspeqvlco.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
17 | eqid 2770 | . . . . . 6 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
18 | eqid 2770 | . . . . . 6 ⊢ (LSpan‘𝑀) = (LSpan‘𝑀) | |
19 | 16, 17, 18 | lspval 19187 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → ((LSpan‘𝑀)‘𝑉) = ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠}) |
20 | 13, 15, 19 | syl2anc 565 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → ((LSpan‘𝑀)‘𝑉) = ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠}) |
21 | 12, 20 | eleqtrrd 2852 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑥 ∈ ((LSpan‘𝑀)‘𝑉)) |
22 | 21 | ex 397 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝑀 LinCo 𝑉) → 𝑥 ∈ ((LSpan‘𝑀)‘𝑉))) |
23 | 22 | ssrdv 3756 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∀wral 3060 {crab 3064 ⊆ wss 3721 𝒫 cpw 4295 ∩ cint 4609 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 LModclmod 19072 LSubSpclss 19141 LSpanclspn 19183 LinCo clinco 42712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-n0 11494 df-z 11579 df-uz 11888 df-fz 12533 df-fzo 12673 df-seq 13008 df-hash 13321 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-0g 16309 df-gsum 16310 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-submnd 17543 df-grp 17632 df-minusg 17633 df-sbg 17634 df-subg 17798 df-cntz 17956 df-cmn 18401 df-abl 18402 df-mgp 18697 df-ur 18709 df-ring 18756 df-lmod 19074 df-lss 19142 df-lsp 19184 df-linc 42713 df-lco 42714 |
This theorem is referenced by: lspeqlco 42746 |
Copyright terms: Public domain | W3C validator |